PointMeasures#
- class astropy.stats.PointMeasures(p0: float | None = 0.05, gamma: float | None = None, ncp_prior: float | None = None)[source]#
Bases:
FitnessFunc
Bayesian blocks fitness for point measures.
- Parameters:
- p0
float
, optional False alarm probability, used to compute the prior on \(N_{\rm blocks}\) (see eq. 21 of Scargle 2013). If gamma is specified, p0 is ignored.
- gamma
float
, optional If specified, then use this gamma to compute the general prior form, \(p \sim {\tt gamma}^{N_{\rm blocks}}\). If gamma is specified, p0 is ignored.
- ncp_prior
float
, optional If specified, use the value of
ncp_prior
to compute the prior as above, using the definition \({\tt ncp\_prior} = -\ln({\tt gamma})\). Ifncp_prior
is specified,gamma
andp0
are ignored.
- p0
Methods Summary
fitness
(a_k, b_k)validate_input
(t, x, sigma)Validate inputs to the model.
Methods Documentation
- validate_input(t: ArrayLike, x: ArrayLike | None, sigma: float | ArrayLike | None) tuple[NDArray[float], NDArray[float], NDArray[float]] [source]#
Validate inputs to the model.
- Parameters:
- tarray_like
times of observations
- xarray_like, optional
values observed at each time
- sigma
float
or array_like, optional errors in values x
- Returns:
- t, x, sigmaarray_like,
float
validated and perhaps modified versions of inputs
- t, x, sigmaarray_like,