Subclassing#

NDData#

This class serves as the base for subclasses that use a numpy.ndarray (or something that presents a numpy-like interface) as the data attribute.

Note

Each attribute is saved as an attribute with one leading underscore. For example, the data is saved as _data and the mask as _mask, and so on.

Adding Another Property#

>>> from astropy.nddata import NDData
>>> class NDDataWithFlags(NDData):
...     def __init__(self, *args, **kwargs):
...         # Remove flags attribute if given and pass it to the setter.
...         self.flags = kwargs.pop('flags') if 'flags' in kwargs else None
...         super().__init__(*args, **kwargs)
...
...     @property
...     def flags(self):
...         return self._flags
...
...     @flags.setter
...     def flags(self, value):
...         self._flags = value
>>> ndd = NDDataWithFlags([1,2,3])
>>> ndd.flags is None
True
>>> ndd = NDDataWithFlags([1,2,3], flags=[0, 0.2, 0.3])
>>> ndd.flags
[0, 0.2, 0.3]

Note

To simplify subclassing, each setter (except for data) is called during __init__ so putting restrictions on any attribute can be done inside the setter and will also apply during instance creation.

Customize the Setter for a Property#

>>> import numpy as np
>>> class NDDataMaskBoolNumpy(NDData):
...
...     @NDData.mask.setter
...     def mask(self, value):
...         # Convert mask to boolean numpy array.
...         self._mask = np.array(value, dtype=np.bool_)
>>> ndd = NDDataMaskBoolNumpy([1,2,3])
>>> ndd.mask = [True, False, True]
>>> ndd.mask
array([ True, False,  True]...)

Extend the Setter for a Property#

unit, meta, and uncertainty implement some additional logic in their setter so subclasses might define a call to the superclass and let the super property set the attribute afterwards:

>>> import numpy as np

>>> class NDDataUncertaintyShapeChecker(NDData):
...
...     @NDData.uncertainty.setter
...     def uncertainty(self, value):
...         value = np.asarray(value)
...         if value.shape != self.data.shape:
...             raise ValueError('uncertainty must have the same shape as the data.')
...         # Call the setter of the super class in case it might contain some
...         # important logic (only True for meta, unit and uncertainty)
...         super(NDDataUncertaintyShapeChecker, self.__class__).uncertainty.fset(self, value)
...         # Unlike "super(cls_name, cls_name).uncertainty.fset" or
...         # or "NDData.uncertainty.fset" this will respect Pythons method
...         # resolution order.

>>> ndd = NDDataUncertaintyShapeChecker([1,2,3], uncertainty=[2,3,4])
INFO: uncertainty should have attribute uncertainty_type. [astropy.nddata.nddata]
>>> ndd.uncertainty
UnknownUncertainty([2, 3, 4])

Having a Setter for the Data#

>>> class NDDataWithDataSetter(NDData):
...
...     @NDData.data.setter
...     def data(self, value):
...         self._data = np.asarray(value)
>>> ndd = NDDataWithDataSetter([1,2,3])
>>> ndd.data = [3,2,1]
>>> ndd.data
array([3, 2, 1])

NDDataRef#

NDDataRef itself inherits from NDData so any of the possibilities there also apply to NDDataRef. But NDDataRef also inherits from the Mixins:

Which allow additional operations.

Add Another Arithmetic Operation#

Adding another operation is possible provided the data and unit allow it within the framework of Quantity.

Examples#

To add a power function:

>>> from astropy.nddata import NDDataRef
>>> import numpy as np
>>> from astropy.utils import sharedmethod

>>> class NDDataPower(NDDataRef):
...     @sharedmethod # sharedmethod to allow it also as classmethod
...     def pow(self, operand, operand2=None, **kwargs):
...         # the uncertainty doesn't allow propagation so set it to None
...         kwargs['propagate_uncertainties'] = None
...         # Call the _prepare_then_do_arithmetic function with the
...         # numpy.power ufunc.
...         return self._prepare_then_do_arithmetic(np.power, operand,
...                                                 operand2, **kwargs)

This can be used like the other arithmetic methods similar to add(). So it works when calling it on the class or the instance:

>>> ndd = NDDataPower([1,2,3])

>>> # using it on the instance with one operand
>>> ndd.pow(3)  
NDDataPower([ 1,  8, 27]...)

>>> # using it on the instance with two operands
>>> ndd.pow([1,2,3], [3,4,5])  
NDDataPower([ 1, 16, 243]...)

>>> # or using it as classmethod
>>> NDDataPower.pow(6, [1,2,3])  
NDDataPower([ 6, 36, 216]...)

To allow propagation also with uncertainty see subclassing NDUncertainty.

The _prepare_then_do_arithmetic implements the relevant checks if it was called on the class or the instance, and if one or two operands were given, converts the operands, if necessary, to the appropriate classes. Overriding _prepare_then_do_arithmetic in subclasses should be avoided if possible.

Arithmetic on an Existing Property#

Customizing how an existing property is handled during arithmetic is possible with some arguments to the function calls such as add(), but it is possible to hardcode behavior too. The actual operation on the attribute (except for unit) is done in a method _arithmetic_* where * is the name of the property.

Examples#

To customize how the meta will be affected during arithmetic:

>>> from astropy.nddata import NDDataRef

>>> from copy import deepcopy
>>> class NDDataWithMetaArithmetics(NDDataRef):
...
...     def _arithmetic_meta(self, operation, operand, handle_mask, **kwds):
...         # the function must take the arguments:
...         # operation (numpy-ufunc like np.add, np.subtract, ...)
...         # operand (the other NDData-like object, already wrapped as NDData)
...         # handle_mask (see description for "add")
...
...         # The meta is dict like but we want the keywords exposure to change
...         # Anticipate that one or both might have no meta and take the first one that has
...         result_meta = deepcopy(self.meta) if self.meta else deepcopy(operand.meta)
...         # Do the operation on the keyword if the keyword exists
...         if result_meta and 'exposure' in result_meta:
...             result_meta['exposure'] = operation(result_meta['exposure'], operand.data)
...         return result_meta # return it

To trigger this method, the handle_meta argument to arithmetic methods can be anything except None or "first_found":

>>> ndd = NDDataWithMetaArithmetics([1,2,3], meta={'exposure': 10})
>>> ndd2 = ndd.add(10, handle_meta='')
>>> ndd2.meta
{'exposure': np.int64(20)}

>>> ndd3 = ndd.multiply(0.5, handle_meta='')
>>> ndd3.meta
{'exposure': np.float64(5.0)}

Warning

To use these internal _arithmetic_* methods there are some restrictions on the attributes when calling the operation:

  • mask: handle_mask must not be None, "ff", or "first_found".

  • wcs: compare_wcs argument with the same restrictions as mask.

  • meta: handle_meta argument with the same restrictions as mask.

  • uncertainty: propagate_uncertainties must be None or evaluate to False. arithmetic_uncertainty must also accept different arguments: operation, operand, result, correlation, **kwargs.

Changing the Default Argument for Arithmetic Operations#

If the goal is to change the default value of an existing parameter for arithmetic methods, such as when explicitly specifying the parameter each time you call an arithmetic operation is too much effort, you can change the default value of existing parameters by changing it in the method signature of _arithmetic.

Example#

To change the default value of an existing parameter for arithmetic methods:

>>> from astropy.nddata import NDDataRef
>>> import numpy as np

>>> class NDDDiffAritDefaults(NDDataRef):
...     def _arithmetic(self, *args, **kwargs):
...         # Changing the default of handle_mask to None
...         if 'handle_mask' not in kwargs:
...             kwargs['handle_mask'] = None
...         # Call the original with the updated kwargs
...         return super()._arithmetic(*args, **kwargs)

>>> ndd1 = NDDDiffAritDefaults(1, mask=False)
>>> ndd2 = NDDDiffAritDefaults(1, mask=True)
>>> # No mask handling logic will return no mask:
>>> ndd1.add(ndd2).mask

>>> # But giving other values is still possible:
>>> ndd1.add(ndd2, handle_mask=np.logical_or).mask
np.True_

>>> ndd1.add(ndd2, handle_mask="ff").mask
False

The parameter controlling how properties are handled are all keyword-only so using the *args, **kwargs approach allows you to only alter one default without needing to care about the positional order of arguments.

Arithmetic with an Additional Property#

This also requires overriding the _arithmetic method. Suppose we have a flags attribute again:

>>> from copy import deepcopy
>>> import numpy as np

>>> class NDDataWithFlags(NDDataRef):
...     def __init__(self, *args, **kwargs):
...         # Remove flags attribute if given and pass it to the setter.
...         self.flags = kwargs.pop('flags') if 'flags' in kwargs else None
...         super().__init__(*args, **kwargs)
...
...     @property
...     def flags(self):
...         return self._flags
...
...     @flags.setter
...     def flags(self, value):
...         self._flags = value
...
...     def _arithmetic(self, operation, operand, *args, **kwargs):
...         # take all args and kwargs to allow arithmetic on the other properties
...         # to work like before.
...
...         # do the arithmetic on the flags (pop the relevant kwargs, if any!!!)
...         if self.flags is not None and operand.flags is not None:
...             result_flags = np.logical_or(self.flags, operand.flags)
...             # np.logical_or is just a suggestion you can do what you want
...         else:
...             if self.flags is not None:
...                 result_flags = deepcopy(self.flags)
...             else:
...                 result_flags = deepcopy(operand.flags)
...
...         # Let the superclass do all the other attributes note that
...         # this returns the result and a dictionary containing other attributes
...         result, kwargs = super()._arithmetic(operation, operand, *args, **kwargs)
...         # The arguments for creating a new instance are saved in kwargs
...         # so we need to add another keyword "flags" and add the processed flags
...         kwargs['flags'] = result_flags
...         return result, kwargs # these must be returned

>>> ndd1 = NDDataWithFlags([1,2,3], flags=np.array([1,0,1], dtype=bool))
>>> ndd2 = NDDataWithFlags([1,2,3], flags=np.array([0,0,1], dtype=bool))
>>> ndd3 = ndd1.add(ndd2)
>>> ndd3.flags
array([ True, False,  True]...)

Slicing an Existing Property#

Suppose you have a class expecting a 2D data but the mask is only 1D. This would lead to problems if you were to slice in two dimensions.

>>> from astropy.nddata import NDDataRef
>>> import numpy as np
>>> class NDDataMask1D(NDDataRef):
...     def _slice_mask(self, item):
...         # Multidimensional slices are represented by tuples:
...         if isinstance(item, tuple):
...             # only use the first dimension of the slice
...             return self.mask[item[0]]
...         # Let the superclass deal with the other cases
...         return super()._slice_mask(item)
>>> ndd = NDDataMask1D(np.ones((3,3)), mask=np.ones(3, dtype=bool))
>>> nddsliced = ndd[1:3,1:3]
>>> nddsliced.mask
array([ True,  True]...)

Note

The methods slicing the attributes are prefixed by a _slice_* where * can be mask, uncertainty, or wcs. So overriding them is the most convenient way to customize how the attributes are sliced.

Note

If slicing should affect the unit or meta see the next example.

Slicing an Additional Property#

Building on the added property flags, we want them to be sliceable:

>>> class NDDataWithFlags(NDDataRef):
...     def __init__(self, *args, **kwargs):
...         # Remove flags attribute if given and pass it to the setter.
...         self.flags = kwargs.pop('flags') if 'flags' in kwargs else None
...         super().__init__(*args, **kwargs)
...
...     @property
...     def flags(self):
...         return self._flags
...
...     @flags.setter
...     def flags(self, value):
...         self._flags = value
...
...     def _slice(self, item):
...         # slice all normal attributes
...         kwargs = super()._slice(item)
...         # The arguments for creating a new instance are saved in kwargs
...         # so we need to add another keyword "flags" and add the sliced flags
...         kwargs['flags'] = self.flags[item]
...         return kwargs # these must be returned
>>> ndd = NDDataWithFlags([1,2,3], flags=[0, 0.2, 0.3])
>>> ndd2 = ndd[1:3]
>>> ndd2.flags
[0.2, 0.3]

If you wanted to keep just the original flags instead of the sliced ones, you could use kwargs['flags'] = self.flags and omit the [item].

NDDataBase#

The class NDDataBase is a metaclass — when subclassing it, all properties of NDDataBase must be overridden in the subclass.

Subclassing from NDDataBase gives you complete flexibility in how you implement data storage and the other properties. If your data is stored in a numpy array (or something that behaves like a numpy array), it may be more convenient to subclass NDData instead of NDDataBase.

Example#

To implement the NDDataBase interface by creating a read-only container:

>>> from astropy.nddata import NDDataBase

>>> class NDDataReadOnlyNoRestrictions(NDDataBase):
...     def __init__(self, data, unit, mask, uncertainty, meta, wcs, psf):
...         self._data = data
...         self._unit = unit
...         self._mask = mask
...         self._uncertainty = uncertainty
...         self._meta = meta
...         self._wcs = wcs
...         self._psf = psf
...
...     @property
...     def data(self):
...         return self._data
...
...     @property
...     def unit(self):
...         return self._unit
...
...     @property
...     def mask(self):
...         return self._mask
...
...     @property
...     def uncertainty(self):
...         return self._uncertainty
...
...     @property
...     def meta(self):
...         return self._meta
...
...     @property
...     def wcs(self):
...         return self._wcs
...
...     @property
...     def psf(self):
...         return self._psf

>>> # A meaningless test to show that creating this class is possible:
>>> NDDataReadOnlyNoRestrictions(1,2,3,4,5,6,7) is not None
True

Note

Actually defining an __init__ is not necessary and the properties could return arbitrary values but the properties must be defined.

Subclassing NDUncertainty#

Warning

The internal interface of NDUncertainty and subclasses is experimental and might change in future versions.

Subclasses deriving from NDUncertainty need in order to implement:

  • Property uncertainty_type should return a string describing the uncertainty, for example, "ivar" for inverse variance.

  • Methods for propagation: _propagate_* where * is the name of the universal function (ufunc) that is used on the NDData parent.

Creating an Uncertainty without Propagation#

UnknownUncertainty is a minimal working implementation without error propagation. We can create an uncertainty by storing systematic uncertainties:

>>> from astropy.nddata import NDUncertainty

>>> class SystematicUncertainty(NDUncertainty):
...     @property
...     def uncertainty_type(self):
...         return 'systematic'
...
...     def _data_unit_to_uncertainty_unit(self, value):
...         return None
...
...     def _propagate_add(self, other_uncert, *args, **kwargs):
...         return None
...
...     def _propagate_subtract(self, other_uncert, *args, **kwargs):
...         return None
...
...     def _propagate_multiply(self, other_uncert, *args, **kwargs):
...         return None
...
...     def _propagate_divide(self, other_uncert, *args, **kwargs):
...         return None

>>> SystematicUncertainty([10])
SystematicUncertainty([10])