Lecture 8. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 1


 Ethel Freeman
 6 years ago
 Views:
Transcription
1 Lecture 8 Sergei Fedotov Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) / 1
2 Lecture 8 1 OneStep Binomial Model for Option Price 2 RiskNeutral Valuation 3 Examples Sergei Fedotov (University of Manchester) / 1
3 OneStep Binomial Model Initial stock price is S 0. The stock price can either move up from S 0 to S 0 u or down from S 0 to S 0 d ( u > 1;d < 1). Sergei Fedotov (University of Manchester) / 1
4 OneStep Binomial Model Initial stock price is S 0. The stock price can either move up from S 0 to S 0 u or down from S 0 to S 0 d ( u > 1;d < 1). At time T, let the option price be C u if the stock price moves up, and C d if the stock price moves down. Sergei Fedotov (University of Manchester) / 1
5 OneStep Binomial Model Initial stock price is S 0. The stock price can either move up from S 0 to S 0 u or down from S 0 to S 0 d ( u > 1;d < 1). At time T, let the option price be C u if the stock price moves up, and C d if the stock price moves down. Sergei Fedotov (University of Manchester) / 1
6 OneStep Binomial Model Initial stock price is S 0. The stock price can either move up from S 0 to S 0 u or down from S 0 to S 0 d ( u > 1;d < 1). At time T, let the option price be C u if the stock price moves up, and C d if the stock price moves down. The purpose is to find the current price C 0 of a European call option. Sergei Fedotov (University of Manchester) / 1
7 Riskless Portfolio Now, we set up a portfolio consisting of a long position in shares and short position in one call Π = S C Sergei Fedotov (University of Manchester) / 1
8 Riskless Portfolio Now, we set up a portfolio consisting of a long position in shares and short position in one call Π = S C Let us find the number of shares that makes the portfolio Π riskless. Sergei Fedotov (University of Manchester) / 1
9 Riskless Portfolio Now, we set up a portfolio consisting of a long position in shares and short position in one call Π = S C Let us find the number of shares that makes the portfolio Π riskless. The value of portfolio when stock moves up is S 0 u C u The value of portfolio when stock moves down is S 0 d C d Sergei Fedotov (University of Manchester) / 1
10 Riskless Portfolio Now, we set up a portfolio consisting of a long position in shares and short position in one call Π = S C Let us find the number of shares that makes the portfolio Π riskless. The value of portfolio when stock moves up is S 0 u C u The value of portfolio when stock moves down is S 0 d C d If portfolio Π = S C is riskfree, then S 0 u C u = S 0 d C d Sergei Fedotov (University of Manchester) / 1
11 NoArbitrage Argument The number of shares is = Cu C d S 0 (u d). Sergei Fedotov (University of Manchester) / 1
12 NoArbitrage Argument The number of shares is = Cu C d S 0 (u d). Because portfolio is riskless for this, the current value Π 0 can be found by discounting: Π 0 = ( S 0 u C u )e rt, where r is the interest rate. Sergei Fedotov (University of Manchester) / 1
13 NoArbitrage Argument The number of shares is = Cu C d S 0 (u d). Because portfolio is riskless for this, the current value Π 0 can be found by discounting: Π 0 = ( S 0 u C u )e rt, where r is the interest rate. On the other hand, the cost of setting up the portfolio is Π 0 = S 0 C 0. Therefore S 0 C 0 = ( S 0 u C u )e rt. Sergei Fedotov (University of Manchester) / 1
14 NoArbitrage Argument The number of shares is = Cu C d S 0 (u d). Because portfolio is riskless for this, the current value Π 0 can be found by discounting: Π 0 = ( S 0 u C u )e rt, where r is the interest rate. On the other hand, the cost of setting up the portfolio is Π 0 = S 0 C 0. Therefore S 0 C 0 = ( S 0 u C u )e rt. Finally, the current call option price is where = Cu C d S 0 (u d) C 0 = S 0 ( S 0 u C u )e rt, (NoArbitrage Argument). Sergei Fedotov (University of Manchester) / 1
15 RiskNeutral Valuation Alternatively where (RiskNeutral Valuation) C 0 = e rt (pc u +(1 p)c d ), p = ert d u d. Sergei Fedotov (University of Manchester) / 1
16 RiskNeutral Valuation Alternatively where (RiskNeutral Valuation) C 0 = e rt (pc u +(1 p)c d ), p = ert d u d. It is natural to interpret the variable 0 p 1 as the probability of an up movement in the stock price, and the variable 1 p as the probability of a down movement. Sergei Fedotov (University of Manchester) / 1
17 RiskNeutral Valuation Alternatively where (RiskNeutral Valuation) C 0 = e rt (pc u +(1 p)c d ), p = ert d u d. It is natural to interpret the variable 0 p 1 as the probability of an up movement in the stock price, and the variable 1 p as the probability of a down movement. Fair price of a call option C 0 is equal to the expected value of its future payoff discounted at the riskfree interest rate. Sergei Fedotov (University of Manchester) / 1
18 RiskNeutral Valuation Alternatively where (RiskNeutral Valuation) C 0 = e rt (pc u +(1 p)c d ), p = ert d u d. It is natural to interpret the variable 0 p 1 as the probability of an up movement in the stock price, and the variable 1 p as the probability of a down movement. Fair price of a call option C 0 is equal to the expected value of its future payoff discounted at the riskfree interest rate. For a put option P 0 we have the same result P 0 = e rt (pp u +(1 p)p d ). Sergei Fedotov (University of Manchester) / 1
19 Example A stock price is currently $40. At the end of three months it will be either $44 or $36. The riskfree interest rate is 12%. What is the value of threemonth European call option with a strike price of $42? Use noarbitrage arguments and riskneutral valuation. Sergei Fedotov (University of Manchester) / 1
20 Example A stock price is currently $40. At the end of three months it will be either $44 or $36. The riskfree interest rate is 12%. What is the value of threemonth European call option with a strike price of $42? Use noarbitrage arguments and riskneutral valuation. In this case S 0 = 40, u = 1.1, d = 0.9, r = 0.12, T = 0.25, C u = 2, C d = 0. Sergei Fedotov (University of Manchester) / 1
21 Example A stock price is currently $40. At the end of three months it will be either $44 or $36. The riskfree interest rate is 12%. What is the value of threemonth European call option with a strike price of $42? Use noarbitrage arguments and riskneutral valuation. In this case S 0 = 40, u = 1.1, d = 0.9, r = 0.12, T = 0.25, C u = 2, C d = 0. Noarbitrage arguments: the number of shares = C u C d S 0 u S 0 d = ( ) = 0.25 Sergei Fedotov (University of Manchester) / 1
22 Example A stock price is currently $40. At the end of three months it will be either $44 or $36. The riskfree interest rate is 12%. What is the value of threemonth European call option with a strike price of $42? Use noarbitrage arguments and riskneutral valuation. In this case S 0 = 40, u = 1.1, d = 0.9, r = 0.12, T = 0.25, C u = 2, C d = 0. Noarbitrage arguments: the number of shares = C u C d S 0 u S 0 d = and the value of call option ( ) = 0.25 C 0 = S 0 (S 0 u C u )e rt = ( ) e = Sergei Fedotov (University of Manchester) / 1
23 Example Riskneutral valuation: one can find the probability p p = ert d u d = e = Sergei Fedotov (University of Manchester) / 1
24 Example Riskneutral valuation: one can find the probability p and the value of call option p = ert d u d = e = C 0 = e rt [pc u +(1 p)c d ] = e [ ] = Sergei Fedotov (University of Manchester) / 1
Lecture 9. Sergei Fedotov. 20912  Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 8
Lecture 9 Sergei Fedotov 20912  Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 8 Lecture 9 1 RiskNeutral Valuation 2 RiskNeutral World 3 TwoSteps Binomial
More informationLecture 11. Sergei Fedotov. 20912  Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7
Lecture 11 Sergei Fedotov 20912  Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 11 1 American Put Option Pricing on Binomial Tree 2 Replicating
More information10 Binomial Trees. 10.1 Onestep model. 1. Model structure. ECG590I Asset Pricing. Lecture 10: Binomial Trees 1
ECG590I Asset Pricing. Lecture 10: Binomial Trees 1 10 Binomial Trees 10.1 Onestep model 1. Model structure ECG590I Asset Pricing. Lecture 10: Binomial Trees 2 There is only one time interval (t 0, t
More informationLectures. Sergei Fedotov. 20912  Introduction to Financial Mathematics. No tutorials in the first week
Lectures Sergei Fedotov 20912  Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics
More informationJorge Cruz Lopez  Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.
Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral
More informationLecture 15. Sergei Fedotov. 20912  Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6
Lecture 15 Sergei Fedotov 20912  Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 BlackScholes Equation and Replicating Portfolio 2 Static
More informationIntroduction to Binomial Trees
11 C H A P T E R Introduction to Binomial Trees A useful and very popular technique for pricing an option involves constructing a binomial tree. This is a diagram that represents di erent possible paths
More informationBINOMIAL OPTION PRICING
Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex optionpricing
More informationLecture 21 Options Pricing
Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Putcall
More informationOne Period Binomial Model
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing
More informationLecture 6: Option Pricing Using a Onestep Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a Onestep Binomial Tree An oversimplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
More informationa. What is the portfolio of the stock and the bond that replicates the option?
Practice problems for Lecture 2. Answers. 1. A Simple Option Pricing Problem in One Period Riskless bond (interest rate is 5%): 1 15 Stock: 5 125 5 Derivative security (call option with a strike of 8):?
More informationPart V: Option Pricing Basics
erivatives & Risk Management First Week: Part A: Option Fundamentals payoffs market microstructure Next 2 Weeks: Part B: Option Pricing fundamentals: intrinsic vs. time value, putcall parity introduction
More informationLecture 12: The BlackScholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The BlackScholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The BlackScholesMerton Model
More informationPricing Options: Pricing Options: The Binomial Way FINC 456. The important slide. Pricing options really boils down to three key concepts
Pricing Options: The Binomial Way FINC 456 Pricing Options: The important slide Pricing options really boils down to three key concepts Two portfolios that have the same payoff cost the same. Why? A perfectly
More informationOption Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of inthemoney options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
More informationLecture 7: Bounds on Options Prices Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 7: Bounds on Options Prices Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Option Price Quotes Reading the
More informationHull, Chapter 11 + Sections 17.1 and 17.2 Additional reference: John Cox and Mark Rubinstein, Options Markets, Chapter 5
Binomial Moel Hull, Chapter 11 + ections 17.1 an 17.2 Aitional reference: John Cox an Mark Rubinstein, Options Markets, Chapter 5 1. OnePerio Binomial Moel Creating synthetic options (replicating options)
More informationBinomial trees and risk neutral valuation
Binomial trees and risk neutral valuation Moty Katzman September 19, 2014 Derivatives in a simple world A derivative is an asset whose value depends on the value of another asset. Call/Put European/American
More informationAmerican and European. Put Option
American and European Put Option Analytical Finance I Kinda Sumlaji 1 Table of Contents: 1. Introduction... 3 2. Option Style... 4 3. Put Option 4 3.1 Definition 4 3.2 Payoff at Maturity... 4 3.3 Example
More informationLecture 4: Derivatives
Lecture 4: Derivatives School of Mathematics Introduction to Financial Mathematics, 2015 Lecture 4 1 Financial Derivatives 2 uropean Call and Put Options 3 Payoff Diagrams, Short Selling and Profit Derivatives
More informationDynamic Trading Strategies
Dynamic Trading Strategies Concepts and Buzzwords MultiPeriod Bond Model Replication and Pricing Using Dynamic Trading Strategies Pricing Using Risk eutral Probabilities Onefactor model, noarbitrage
More informationFigure S9.1 Profit from long position in Problem 9.9
Problem 9.9 Suppose that a European call option to buy a share for $100.00 costs $5.00 and is held until maturity. Under what circumstances will the holder of the option make a profit? Under what circumstances
More informationChapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of riskadjusted discount rate. Part D Introduction to derivatives. Forwards
More informationOPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options
OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis binomial model replicating portfolio single period artificial (riskneutral)
More informationDERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis review of pricing formulas assets versus futures practical issues call options
More informationThe BlackScholes pricing formulas
The BlackScholes pricing formulas Moty Katzman September 19, 2014 The BlackScholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock
More informationCaput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
More informationOption pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
More informationLecture 12. Options Strategies
Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same
More information7: The CRR Market Model
Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The CoxRossRubinstein
More informationUCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,
More informationwhere N is the standard normal distribution function,
The BlackScholesMerton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at
More informationOn BlackScholes Equation, Black Scholes Formula and Binary Option Price
On BlackScholes Equation, Black Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. BlackScholes Equation is derived using two methods: (1) riskneutral measure; (2)  hedge. II.
More informationTHE OHANA GROUP AT MORGAN STANLEY EMPLOYEE STOCK OPTION VALUATION
THE OHANA GROUP AT MORGAN STANLEY EMPLOYEE STOCK OPTION VALUATION BRYAN GOULD, FINANCIAL ADVISOR, PORTFOLIO MANAGER TELEPHONE: (858) 6435004 4350 La Jolla Village Drive, Suite 1000, San Diego, CA 92122
More informationLecture 4: Properties of stock options
Lecture 4: Properties of stock options Reading: J.C.Hull, Chapter 9 An European call option is an agreement between two parties giving the holder the right to buy a certain asset (e.g. one stock unit)
More informationThe Binomial Option Pricing Model André Farber
1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a nondividend paying stock whose price is initially S 0. Divide time into small
More informationFinance 436 Futures and Options Review Notes for Final Exam. Chapter 9
Finance 436 Futures and Options Review Notes for Final Exam Chapter 9 1. Options: call options vs. put options, American options vs. European options 2. Characteristics: option premium, option type, underlying
More informationFinancial Options: Pricing and Hedging
Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equitylinked securities requires an understanding of financial
More information第 9 讲 : 股 票 期 权 定 价 : BS 模 型 Valuing Stock Options: The BlackScholes Model
1 第 9 讲 : 股 票 期 权 定 价 : BS 模 型 Valuing Stock Options: The BlackScholes Model Outline 有 关 股 价 的 假 设 The BS Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
More informationHow To Value Options In BlackScholes Model
Option Pricing Basics Aswath Damodaran Aswath Damodaran 1 What is an option? An option provides the holder with the right to buy or sell a specified quantity of an underlying asset at a fixed price (called
More informationLecture 5: Put  Call Parity
Lecture 5: Put  Call Parity Reading: J.C.Hull, Chapter 9 Reminder: basic assumptions 1. There are no arbitrage opportunities, i.e. no party can get a riskless profit. 2. Borrowing and lending are possible
More information9 Basics of options, including trading strategies
ECG590I Asset Pricing. Lecture 9: Basics of options, including trading strategies 1 9 Basics of options, including trading strategies Option: The option of buying (call) or selling (put) an asset. European
More informationCall Price as a Function of the Stock Price
Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived
More informationChapter 21 Valuing Options
Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher
More informationNumerical Methods for Option Pricing
Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly
More informationSession IX: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics
Session IX: Stock Options: Properties, Mechanics and Valuation Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Stock
More informationValuing Stock Options: The BlackScholesMerton Model. Chapter 13
Valuing Stock Options: The BlackScholesMerton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The BlackScholesMerton Random Walk Assumption
More informationLecture 3: Put Options and DistributionFree Results
OPTIONS and FUTURES Lecture 3: Put Options and DistributionFree Results Philip H. Dybvig Washington University in Saint Louis put options binomial valuation what are distributionfree results? option
More information2. How is a fund manager motivated to behave with this type of renumeration package?
MØA 155 PROBLEM SET: Options Exercise 1. Arbitrage [2] In the discussions of some of the models in this course, we relied on the following type of argument: If two investment strategies have the same payoff
More informationOption Payoffs. Problems 11 through 16: Describe (as I have in 110) the strategy depicted by each payoff diagram. #11 #12 #13 #14 #15 #16
Option s Problems 1 through 1: Assume that the stock is currently trading at $2 per share and options and bonds have the prices given in the table below. Depending on the strike price (X) of the option
More informationInstitutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 081 Institutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
More informationValuation, Pricing of Options / Use of MATLAB
CS5 Computational Tools and Methods in Finance Tom Coleman Valuation, Pricing of Options / Use of MATLAB 1.0 PutCall Parity (review) Given a European option with no dividends, let t current time T exercise
More informationTwoState Option Pricing
Rendleman and Bartter [1] present a simple twostate model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.
More informationName: 1 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 2 (5) a b c d e. 3 (5) a b c d e 2 (2) TRUE FALSE. 4 (5) a b c d e.
Name: Thursday, February 28 th M375T=M396C Introduction to Actuarial Financial Mathematics Spring 2013, The University of Texas at Austin InTerm Exam I Instructor: Milica Čudina Notes: This is a closed
More informationFIN40008 FINANCIAL INSTRUMENTS SPRING 2008
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes consider the way put and call options and the underlying can be combined to create hedges, spreads and combinations. We will consider the
More informationBUS 316 NOTES AND ANSWERS BINOMIAL OPTION PRICING
BUS 316 NOTES AND ANSWERS BINOMIAL OPTION PRICING 3. Suppose there are only two possible future states of the world. In state 1 the stock price rises by 50%. In state 2, the stock price drops by 25%. The
More informationBinomial lattice model for stock prices
Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }
More informationAmerican Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options
American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus
More informationTABLE OF CONTENTS. A. PutCall Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13
TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. PutCall Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:
More informationIntroduction to Options. Derivatives
Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived
More informationFactors Affecting Option Prices
Factors Affecting Option Prices 1. The current stock price S 0. 2. The option strike price K. 3. The time to expiration T. 4. The volatility of the stock price σ. 5. The riskfree interest rate r. 6. The
More informationFinance 400 A. Penati  G. Pennacchi. Option Pricing
Finance 400 A. Penati  G. Pennacchi Option Pricing Earlier we derived general pricing relationships for contingent claims in terms of an equilibrium stochastic discount factor or in terms of elementary
More informationASimpleMarketModel. 2.1 Model Assumptions. Assumption 2.1 (Two trading dates)
2 ASimpleMarketModel In the simplest possible market model there are two assets (one stock and one bond), one time step and just two possible future scenarios. Many of the basic ideas of mathematical finance
More informationStock. Call. Put. Bond. Option Fundamentals
Option Fundamentals Payoff Diagrams hese are the basic building blocks of financial engineering. hey represent the payoffs or terminal values of various investment choices. We shall assume that the maturity
More informationOptions. + Concepts and Buzzwords. Readings. PutCall Parity Volatility Effects
+ Options + Concepts and Buzzwords PutCall Parity Volatility Effects Call, put, European, American, underlying asset, strike price, expiration date Readings Tuckman, Chapter 19 Veronesi, Chapter 6 Options
More informationOption Premium = Intrinsic. Speculative Value. Value
Chapters 4/ Part Options: Basic Concepts Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options An OptionPricing Formula Investment in
More informationChapter 1: Financial Markets and Financial Derivatives
Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange
More informationLecture 4: The BlackScholes model
OPTIONS and FUTURES Lecture 4: The BlackScholes model Philip H. Dybvig Washington University in Saint Louis BlackScholes option pricing model Lognormal price process Call price Put price Using BlackScholes
More informationConvenient Conventions
C: call value. P : put value. X: strike price. S: stock price. D: dividend. Convenient Conventions c 2015 Prof. YuhDauh Lyuu, National Taiwan University Page 168 Payoff, Mathematically Speaking The payoff
More information1 Introduction to Option Pricing
ESTM 60202: Financial Mathematics Alex Himonas 03 Lecture Notes 1 October 7, 2009 1 Introduction to Option Pricing We begin by defining the needed finance terms. Stock is a certificate of ownership of
More informationAdditional questions for chapter 4
Additional questions for chapter 4 1. A stock price is currently $ 1. Over the next two sixmonth periods it is expected to go up by 1% or go down by 1%. The riskfree interest rate is 8% per annum with
More informationA short note on American option prices
A short note on American option Filip Lindskog April 27, 2012 1 The setup An American call option with strike price K written on some stock gives the holder the right to buy a share of the stock (exercise
More informationOption Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration
CHAPTER 16 Option Valuation 16.1 OPTION VALUATION: INTRODUCTION Option Values Intrinsic value  profit that could be made if the option was immediately exercised Call: stock price  exercise price Put:
More informationThe BlackScholes Formula
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 The BlackScholes Formula These notes examine the BlackScholes formula for European options. The BlackScholes formula are complex as they are based on the
More informationTPPE17 Corporate Finance 1(5) SOLUTIONS REEXAMS 2014 II + III
TPPE17 Corporate Finance 1(5) SOLUTIONS REEXAMS 2014 II III Instructions 1. Only one problem should be treated on each sheet of paper and only one side of the sheet should be used. 2. The solutions folder
More informationPart A: The put call parity relation is: call + present value of exercise price = put + stock price.
Corporate Finance Mod 20: Options, put call parity relation, Practice Problem s ** Exercise 20.1: Put Call Parity Relation! One year European put and call options trade on a stock with strike prices of
More informationTest 4 Created: 3:05:28 PM CDT 1. The buyer of a call option has the choice to exercise, but the writer of the call option has: A.
Test 4 Created: 3:05:28 PM CDT 1. The buyer of a call option has the choice to exercise, but the writer of the call option has: A. The choice to offset with a put option B. The obligation to deliver the
More informationJorge Cruz Lopez  Bus 316: Derivative Securities. Week 11. The BlackScholes Model: Hull, Ch. 13.
Week 11 The BlackScholes Model: Hull, Ch. 13. 1 The BlackScholes Model Objective: To show how the BlackScholes formula is derived and how it can be used to value options. 2 The BlackScholes Model 1.
More informationThe Discrete Binomial Model for Option Pricing
The Discrete Binomial Model for Option Pricing Rebecca Stockbridge Program in Applied Mathematics University of Arizona May 4, 2008 Abstract This paper introduces the notion of option pricing in the context
More informationHow To Value Real Options
FIN 673 Pricing Real Options Professor Robert B.H. Hauswald Kogod School of Business, AU From Financial to Real Options Option pricing: a reminder messy and intuitive: lattices (trees) elegant and mysterious:
More informationOption Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington
Option Pricing with S+FinMetrics PETER FULEKY Department of Economics University of Washington August 27, 2007 Contents 1 Introduction 3 1.1 Terminology.............................. 3 1.2 Option Positions...........................
More informationOption Pricing Theory and Applications. Aswath Damodaran
Option Pricing Theory and Applications Aswath Damodaran What is an option? An option provides the holder with the right to buy or sell a specified quantity of an underlying asset at a fixed price (called
More informationLECTURE 15: AMERICAN OPTIONS
LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These
More informationInvesco Great Wall Fund Management Co. Shenzhen: June 14, 2008
: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of
More informationAn Introduction to Exotic Options
An Introduction to Exotic Options Jeff Casey Jeff Casey is entering his final semester of undergraduate studies at Ball State University. He is majoring in Financial Mathematics and has been a math tutor
More informationACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs)
Problem ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 0,, 2, 8. October 2, 200 (Thurs) (i) The current exchange rate is 0.0$/. (ii) A fouryear dollardenominated European put option
More informationFin 3710 Investment Analysis Professor Rui Yao CHAPTER 14: OPTIONS MARKETS
HW 6 Fin 3710 Investment Analysis Professor Rui Yao CHAPTER 14: OPTIONS MARKETS 4. Cost Payoff Profit Call option, X = 85 3.82 5.00 +1.18 Put option, X = 85 0.15 0.000.15 Call option, X = 90 0.40 0.000.40
More informationFour Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com
Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the
More informationOptions: Valuation and (No) Arbitrage
Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial
More informationPractice Set #7: Binomial option pricing & Delta hedging. What to do with this practice set?
Derivatives (3 credits) Professor Michel Robe Practice Set #7: Binomial option pricing & Delta hedging. What to do with this practice set? To help students with the material, eight practice sets with solutions
More informationOptions. Moty Katzman. September 19, 2014
Options Moty Katzman September 19, 2014 What are options? Options are contracts conferring certain rights regarding the buying or selling of assets. A European call option gives the owner the right to
More informationCall and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
More informationFINANCIAL OPTION ANALYSIS HANDOUTS
FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any
More informationOverview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies
Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies Noarbitrage bounds on option prices Binomial option pricing BlackScholesMerton
More informationCHAPTER 21: OPTION VALUATION
CHAPTER 21: OPTION VALUATION 1. Put values also must increase as the volatility of the underlying stock increases. We see this from the parity relation as follows: P = C + PV(X) S 0 + PV(Dividends). Given
More informationChapter 5 Financial Forwards and Futures
Chapter 5 Financial Forwards and Futures Question 5.1. Four different ways to sell a share of stock that has a price S(0) at time 0. Question 5.2. Description Get Paid at Lose Ownership of Receive Payment
More informationTwoState Model of Option Pricing
Rendleman and Bartter [1] put forward a simple twostate model of option pricing. As in the BlackScholes model, to buy the stock and to sell the call in the hedge ratio obtains a riskfree portfolio.
More informationLecture 17/18/19 Options II
1 Lecture 17/18/19 Options II Alexander K. Koch Department of Economics, Royal Holloway, University of London February 25, February 29, and March 10 2008 In addition to learning the material covered in
More information