histogram#
- astropy.stats.histogram(a: ArrayLike, bins: int | list[int | float] | Literal['blocks', 'knuth', 'scott', 'freedman'] | None = 10, range: tuple[int | float, int | float] | None = None, weights: ArrayLike | None = None, **kwargs) tuple[NDArray, NDArray] [source]#
Enhanced histogram function, providing adaptive binnings.
This is a histogram function that enables the use of more sophisticated algorithms for determining bins. Aside from the
bins
argument allowing a string specified how bins are computed, the parameters are the same asnumpy.histogram
.- Parameters:
- aarray_like
array of data to be histogrammed
- bins
int
,list
, orstr
, optional If bins is a string, then it must be one of:
‘blocks’ : use bayesian blocks for dynamic bin widths
‘knuth’ : use Knuth’s rule to determine bins
‘scott’ : use Scott’s rule to determine bins
‘freedman’ : use the Freedman-Diaconis rule to determine bins
- range
tuple
orNone
, optional the minimum and maximum range for the histogram. If not specified, it will be (x.min(), x.max())
- weightsarray_like, optional
An array the same shape as
a
. If given, the histogram accumulates the value of the weight corresponding toa
instead of returning the count of values. This argument does not affect determination of bin edges.- **kwargs
dict
, optional Extra arguments are described in
numpy.histogram
.
- Returns:
See also