Source code for astropy.modeling.fitting

# Licensed under a 3-clause BSD style license - see LICENSE.rst

"""
This module implements classes (called Fitters) which combine optimization
algorithms (typically from `scipy.optimize`) with statistic functions to perform
fitting. Fitters are implemented as callable classes. In addition to the data
to fit, the ``__call__`` method takes an instance of
`~astropy.modeling.core.FittableModel` as input, and returns a copy of the
model with its parameters determined by the optimizer.

Optimization algorithms, called "optimizers" are implemented in
`~astropy.modeling.optimizers` and statistic functions are in
`~astropy.modeling.statistic`. The goal is to provide an easy to extend
framework and allow users to easily create new fitters by combining statistics
with optimizers.

There are two exceptions to the above scheme.
`~astropy.modeling.fitting.LinearLSQFitter` uses Numpy's `~numpy.linalg.lstsq`
function.  `~astropy.modeling.fitting.LevMarLSQFitter` uses
`~scipy.optimize.leastsq` which combines optimization and statistic in one
implementation.
"""
# pylint: disable=invalid-name

import abc
import inspect
import warnings
from functools import reduce, wraps
from importlib.metadata import entry_points

import numpy as np

from astropy.units import Quantity
from astropy.utils.decorators import deprecated_renamed_argument
from astropy.utils.exceptions import AstropyDeprecationWarning, AstropyUserWarning

from ._fitting_parallel import parallel_fit_dask
from .optimizers import DEFAULT_ACC, DEFAULT_EPS, DEFAULT_MAXITER, SLSQP, Simplex
from .spline import (
    SplineExactKnotsFitter,
    SplineInterpolateFitter,
    SplineSmoothingFitter,
    SplineSplrepFitter,
)
from .statistic import leastsquare
from .utils import _combine_equivalency_dict, poly_map_domain

__all__ = [
    "DogBoxLSQFitter",
    "Fitter",
    "FittingWithOutlierRemoval",
    "JointFitter",
    "LMLSQFitter",
    "LevMarLSQFitter",
    "LinearLSQFitter",
    "ModelLinearityError",
    "ModelsError",
    "SLSQPLSQFitter",
    "SimplexLSQFitter",
    "SplineExactKnotsFitter",
    "SplineInterpolateFitter",
    "SplineSmoothingFitter",
    "SplineSplrepFitter",
    "TRFLSQFitter",
    "parallel_fit_dask",
]


# Statistic functions implemented in `astropy.modeling.statistic.py
STATISTICS = [leastsquare]

# Optimizers implemented in `astropy.modeling.optimizers.py
OPTIMIZERS = [Simplex, SLSQP]


class NonFiniteValueError(RuntimeError):
    """
    Error raised when attempting to a non-finite value.
    """


class Covariance:
    """Class for covariance matrix calculated by fitter."""

    def __init__(self, cov_matrix, param_names):
        self.cov_matrix = cov_matrix
        self.param_names = param_names

    def pprint(self, max_lines, round_val):
        # Print and label lower triangle of covariance matrix
        # Print rows for params up to `max_lines`, round floats to 'round_val'
        longest_name = max(len(x) for x in self.param_names)
        ret_str = "parameter variances / covariances \n"
        fstring = f'{"": <{longest_name}}| {{0}}\n'
        for i, row in enumerate(self.cov_matrix):
            if i <= max_lines - 1:
                param = self.param_names[i]
                ret_str += fstring.replace(" " * len(param), param, 1).format(
                    repr(np.round(row[: i + 1], round_val))[7:-2]
                )
            else:
                ret_str += "..."
        return ret_str.rstrip()

    def __repr__(self):
        return self.pprint(max_lines=10, round_val=3)

    def __getitem__(self, params):
        # index covariance matrix by parameter names or indices
        if len(params) != 2:
            raise ValueError("Covariance must be indexed by two values.")
        if all(isinstance(item, str) for item in params):
            i1, i2 = (
                self.param_names.index(params[0]),
                self.param_names.index(params[1]),
            )
        elif all(isinstance(item, int) for item in params):
            i1, i2 = params
        else:
            raise TypeError(
                "Covariance can be indexed by two parameter names or integer indices."
            )
        return self.cov_matrix[i1][i2]


class StandardDeviations:
    """Class for fitting uncertainties."""

    def __init__(self, cov_matrix, param_names):
        self.param_names = param_names
        self.stds = self._calc_stds(cov_matrix)

    def _calc_stds(self, cov_matrix):
        # sometimes scipy lstsq returns a non-sensical negative vals in the
        # diagonals of the cov_x it computes.
        stds = [np.sqrt(x) if x > 0 else None for x in np.diag(cov_matrix)]
        return stds

    def pprint(self, max_lines, round_val):
        longest_name = max(len(x) for x in self.param_names)
        ret_str = "standard deviations\n"
        for i, std in enumerate(self.stds):
            if i <= max_lines - 1:
                param = self.param_names[i]
                ret_str += (
                    f"{param}{' ' * (longest_name - len(param))}| "
                    f"{np.round(std, round_val)}\n"
                )
            else:
                ret_str += "..."
        return ret_str.rstrip()

    def __repr__(self):
        return self.pprint(max_lines=10, round_val=3)

    def __getitem__(self, param):
        if isinstance(param, str):
            i = self.param_names.index(param)
        elif isinstance(param, int):
            i = param
        else:
            raise TypeError(
                "Standard deviation can be indexed by parameter name or integer."
            )
        return self.stds[i]


[docs] class ModelsError(Exception): """Base class for model exceptions."""
[docs] class ModelLinearityError(ModelsError): """Raised when a non-linear model is passed to a linear fitter."""
class UnsupportedConstraintError(ModelsError, ValueError): """ Raised when a fitter does not support a type of constraint. """ def fitter_unit_support(func): """ This is a decorator that can be used to add support for dealing with quantities to any __call__ method on a fitter which may not support quantities itself. This is done by temporarily removing units from all parameters then adding them back once the fitting has completed. """ @wraps(func) def wrapper(self, model, x, y, z=None, **kwargs): equivalencies = kwargs.pop("equivalencies", None) data_has_units = ( isinstance(x, Quantity) or isinstance(y, Quantity) or isinstance(z, Quantity) ) model_has_units = model._has_units if data_has_units or model_has_units: if model._supports_unit_fitting: # We now combine any instance-level input equivalencies with user # specified ones at call-time. input_units_equivalencies = _combine_equivalency_dict( model.inputs, equivalencies, model.input_units_equivalencies ) # If input_units is defined, we transform the input data into those # expected by the model. We hard-code the input names 'x', and 'y' # here since FittableModel instances have input names ('x',) or # ('x', 'y') if model.input_units is not None: if isinstance(x, Quantity): x = x.to( model.input_units[model.inputs[0]], equivalencies=input_units_equivalencies[model.inputs[0]], ) if isinstance(y, Quantity) and z is not None: y = y.to( model.input_units[model.inputs[1]], equivalencies=input_units_equivalencies[model.inputs[1]], ) # Create a dictionary mapping the real model inputs and outputs # names to the data. This remapping of names must be done here, after # the input data is converted to the correct units. rename_data = {model.inputs[0]: x} if z is not None: rename_data[model.outputs[0]] = z rename_data[model.inputs[1]] = y else: rename_data[model.outputs[0]] = y rename_data["z"] = None # We now strip away the units from the parameters, taking care to # first convert any parameters to the units that correspond to the # input units (to make sure that initial guesses on the parameters) # are in the right unit system model = model.without_units_for_data(**rename_data) if isinstance(model, tuple): rename_data["_left_kwargs"] = model[1] rename_data["_right_kwargs"] = model[2] model = model[0] # We strip away the units from the input itself add_back_units = False if isinstance(x, Quantity): add_back_units = True xdata = x.value else: xdata = np.asarray(x) if isinstance(y, Quantity): add_back_units = True ydata = y.value else: ydata = np.asarray(y) if z is not None: if isinstance(z, Quantity): add_back_units = True zdata = z.value else: zdata = np.asarray(z) # We run the fitting if z is None: model_new = func(self, model, xdata, ydata, **kwargs) else: model_new = func(self, model, xdata, ydata, zdata, **kwargs) # And finally we add back units to the parameters if add_back_units: model_new = model_new.with_units_from_data(**rename_data) return model_new else: raise NotImplementedError( "This model does not support being fit to data with units." ) else: return func(self, model, x, y, z=z, **kwargs) return wrapper
[docs] class Fitter: """ Base class for all fitters. Parameters ---------- optimizer : callable A callable implementing an optimization algorithm statistic : callable Statistic function """ _subclass_registry = set() def __init_subclass__(cls) -> None: if not (inspect.isabstract(cls) or cls.__name__.startswith("_")): Fitter._subclass_registry.add(cls) supported_constraints = [] def __init__(self, optimizer, statistic): if optimizer is None: raise ValueError("Expected an optimizer.") if statistic is None: raise ValueError("Expected a statistic function.") if isinstance(optimizer, type): # a callable class self._opt_method = optimizer() elif inspect.isfunction(optimizer): self._opt_method = optimizer else: raise ValueError("Expected optimizer to be a callable class or a function.") if isinstance(statistic, type): self._stat_method = statistic() else: self._stat_method = statistic
[docs] def objective_function(self, fps, *args): """ Function to minimize. Parameters ---------- fps : list parameters returned by the fitter args : list [model, [other_args], [input coordinates]] other_args may include weights or any other quantities specific for a statistic Notes ----- The list of arguments (args) is set in the `__call__` method. Fitters may overwrite this method, e.g. when statistic functions require other arguments. """ model = args[0] meas = args[-1] fitter_to_model_params(model, fps) res = self._stat_method(meas, model, *args[1:-1]) return res
@staticmethod def _add_fitting_uncertainties(*args): """ When available, calculate and sets the parameter covariance matrix (model.cov_matrix) and standard deviations (model.stds). """ return None
[docs] @abc.abstractmethod def __call__(self): """ This method performs the actual fitting and modifies the parameter list of a model. Fitter subclasses should implement this method. """ raise NotImplementedError("Subclasses should implement this method.")
[docs] class LinearLSQFitter(Fitter): """ A class performing a linear least square fitting. Uses `numpy.linalg.lstsq` to do the fitting. Given a model and data, fits the model to the data and changes the model's parameters. Keeps a dictionary of auxiliary fitting information. Notes ----- Note that currently LinearLSQFitter does not support compound models. """ supported_constraints = ["fixed"] supports_masked_input = True def __init__(self, calc_uncertainties=False): self.fit_info = { "residuals": None, "rank": None, "singular_values": None, "params": None, } self._calc_uncertainties = calc_uncertainties @staticmethod def _is_invertible(m): """Check if inverse of matrix can be obtained.""" if m.shape[0] != m.shape[1]: return False if np.linalg.matrix_rank(m) < m.shape[0]: return False return True def _add_fitting_uncertainties(self, model, a, n_coeff, x, y, z=None, resids=None): """ Calculate and parameter covariance matrix and standard deviations and set `cov_matrix` and `stds` attributes. """ x_dot_x_prime = np.dot(a.T, a) masked = False or hasattr(y, "mask") # check if invertible. if not, can't calc covariance. if not self._is_invertible(x_dot_x_prime): return model inv_x_dot_x_prime = np.linalg.inv(x_dot_x_prime) if z is None: # 1D models if len(model) == 1: # single model mask = None if masked: mask = y.mask xx = np.ma.array(x, mask=mask) RSS = [(1 / (xx.count() - n_coeff)) * resids] if len(model) > 1: # model sets RSS = [] # collect sum residuals squared for each model in set for j in range(len(model)): mask = None if masked: mask = y.mask[..., j].ravel() xx = np.ma.array(x, mask=mask) eval_y = model(xx, model_set_axis=False) eval_y = np.rollaxis(eval_y, model.model_set_axis)[j] RSS.append( (1 / (xx.count() - n_coeff)) * np.sum((y[..., j] - eval_y) ** 2) ) else: # 2D model if len(model) == 1: mask = None if masked: warnings.warn( "Calculation of fitting uncertainties " "for 2D models with masked values not " "currently supported.\n", AstropyUserWarning, ) return xx, _ = np.ma.array(x, mask=mask), np.ma.array(y, mask=mask) # len(xx) instead of xx.count. this will break if values are masked? RSS = [(1 / (len(xx) - n_coeff)) * resids] else: RSS = [] for j in range(len(model)): eval_z = model(x, y, model_set_axis=False) mask = None # need to figure out how to deal w/ masking here. if model.model_set_axis == 1: # model_set_axis passed when evaluating only refers to input shapes # so output must be reshaped for model_set_axis=1. eval_z = np.rollaxis(eval_z, 1) eval_z = eval_z[j] RSS.append( [(1 / (len(x) - n_coeff)) * np.sum((z[j] - eval_z) ** 2)] ) covs = [inv_x_dot_x_prime * r for r in RSS] free_param_names = [ x for x in model.fixed if (model.fixed[x] is False) and (model.tied[x] is False) ] if len(covs) == 1: model.cov_matrix = Covariance(covs[0], model.param_names) model.stds = StandardDeviations(covs[0], free_param_names) else: model.cov_matrix = [Covariance(cov, model.param_names) for cov in covs] model.stds = [StandardDeviations(cov, free_param_names) for cov in covs] @staticmethod def _deriv_with_constraints(model, param_indices, x=None, y=None): if y is None: d = np.array(model.fit_deriv(x, *model.parameters)) else: d = np.array(model.fit_deriv(x, y, *model.parameters)) if model.col_fit_deriv: return d[param_indices] else: return d[..., param_indices] def _map_domain_window(self, model, x, y=None): """ Maps domain into window for a polynomial model which has these attributes. """ if y is None: if hasattr(model, "domain") and model.domain is None: model.domain = [x.min(), x.max()] if hasattr(model, "window") and model.window is None: model.window = [-1, 1] return poly_map_domain(x, model.domain, model.window) else: if hasattr(model, "x_domain") and model.x_domain is None: model.x_domain = [x.min(), x.max()] if hasattr(model, "y_domain") and model.y_domain is None: model.y_domain = [y.min(), y.max()] if hasattr(model, "x_window") and model.x_window is None: model.x_window = [-1.0, 1.0] if hasattr(model, "y_window") and model.y_window is None: model.y_window = [-1.0, 1.0] xnew = poly_map_domain(x, model.x_domain, model.x_window) ynew = poly_map_domain(y, model.y_domain, model.y_window) return xnew, ynew
[docs] @fitter_unit_support def __call__( self, model, x, y, z=None, weights=None, rcond=None, *, inplace=False, ): """ Fit data to this model. Parameters ---------- model : `~astropy.modeling.FittableModel` model to fit to x, y, z x : array Input coordinates y : array-like Input coordinates z : array-like, optional Input coordinates. If the dependent (``y`` or ``z``) coordinate values are provided as a `numpy.ma.MaskedArray`, any masked points are ignored when fitting. Note that model set fitting is significantly slower when there are masked points (not just an empty mask), as the matrix equation has to be solved for each model separately when their coordinate grids differ. weights : array, optional Weights for fitting. For data with Gaussian uncertainties, the weights should be 1/sigma. rcond : float, optional Cut-off ratio for small singular values of ``a``. Singular values are set to zero if they are smaller than ``rcond`` times the largest singular value of ``a``. equivalencies : list or None, optional, keyword-only List of *additional* equivalencies that are should be applied in case x, y and/or z have units. Default is None. inplace : bool, optional If `False` (the default), a copy of the model with the fitted parameters set will be returned. If `True`, the returned model will be the same instance as the model passed in, and the parameter values will be changed inplace. Returns ------- fitted_model : `~astropy.modeling.FittableModel` If ``inplace`` is `False` (the default), this is a copy of the input model with parameters set by the fitter. If ``inplace`` is `True`, this is the same model as the input model, with parameters updated to be those set by the fitter. """ if not model.fittable: raise ValueError("Model must be a subclass of FittableModel") if not model.linear: raise ModelLinearityError( "Model is not linear in parameters, " "linear fit methods should not be used." ) if hasattr(model, "submodel_names"): raise ValueError("Model must be simple, not compound") _validate_constraints(self.supported_constraints, model) model_copy = model if inplace else model.copy() model_copy.sync_constraints = False _, fit_param_indices, _ = model_to_fit_params(model_copy) if model_copy.n_inputs == 2 and z is None: raise ValueError("Expected x, y and z for a 2 dimensional model.") farg = _convert_input( x, y, z, n_models=len(model_copy), model_set_axis=model_copy.model_set_axis ) n_fixed = sum(model_copy.fixed.values()) # This is also done by _convert_inputs, but we need it here to allow # checking the array dimensionality before that gets called: if weights is not None: weights = np.asarray(weights, dtype=float) if n_fixed: # The list of fixed params is the complement of those being fitted: fixparam_indices = [ idx for idx in range(len(model_copy.param_names)) if idx not in fit_param_indices ] # Construct matrix of user-fixed parameters that can be dotted with # the corresponding fit_deriv() terms, to evaluate corrections to # the dependent variable in order to fit only the remaining terms: fixparams = np.asarray( [ getattr(model_copy, model_copy.param_names[idx]).value for idx in fixparam_indices ] ) if len(farg) == 2: x, y = farg if weights is not None: # If we have separate weights for each model, apply the same # conversion as for the data, otherwise check common weights # as if for a single model: _, weights = _convert_input( x, weights, n_models=len(model_copy) if weights.ndim == y.ndim else 1, model_set_axis=model_copy.model_set_axis, ) # map domain into window if hasattr(model_copy, "domain"): x = self._map_domain_window(model_copy, x) if n_fixed: lhs = np.asarray( self._deriv_with_constraints(model_copy, fit_param_indices, x=x) ) fixderivs = self._deriv_with_constraints( model_copy, fixparam_indices, x=x ) else: lhs = np.asarray(model_copy.fit_deriv(x, *model_copy.parameters)) sum_of_implicit_terms = model_copy.sum_of_implicit_terms(x) rhs = y else: x, y, z = farg if weights is not None: # If we have separate weights for each model, apply the same # conversion as for the data, otherwise check common weights # as if for a single model: _, _, weights = _convert_input( x, y, weights, n_models=len(model_copy) if weights.ndim == z.ndim else 1, model_set_axis=model_copy.model_set_axis, ) # map domain into window if hasattr(model_copy, "x_domain"): x, y = self._map_domain_window(model_copy, x, y) if n_fixed: lhs = np.asarray( self._deriv_with_constraints( model_copy, fit_param_indices, x=x, y=y ) ) fixderivs = self._deriv_with_constraints( model_copy, fixparam_indices, x=x, y=y ) else: lhs = np.asanyarray(model_copy.fit_deriv(x, y, *model_copy.parameters)) sum_of_implicit_terms = model_copy.sum_of_implicit_terms(x, y) if len(model_copy) > 1: # Just to be explicit (rather than baking in False == 0): model_axis = model_copy.model_set_axis or 0 if z.ndim > 2: # For higher-dimensional z, flatten all the axes except the # dimension along which models are stacked and transpose so # the model axis is *last* (I think this resolves Erik's # pending generalization from 80a6f25a): rhs = np.rollaxis(z, model_axis, z.ndim) rhs = rhs.reshape(-1, rhs.shape[-1]) else: # This "else" seems to handle the corner case where the # user has already flattened x/y before attempting a 2D fit # but z has a second axis for the model set. NB. This is # ~5-10x faster than using rollaxis. rhs = z.T if model_axis == 0 else z if weights is not None: # Same for weights if weights.ndim > 2: # Separate 2D weights for each model: weights = np.rollaxis(weights, model_axis, weights.ndim) weights = weights.reshape(-1, weights.shape[-1]) elif weights.ndim == z.ndim: # Separate, flattened weights for each model: weights = weights.T if model_axis == 0 else weights else: # Common weights for all the models: weights = weights.ravel() else: rhs = z.ravel() if weights is not None: weights = weights.ravel() # If the derivative is defined along rows (as with non-linear models) if model_copy.col_fit_deriv: lhs = np.asarray(lhs).T # Some models (eg. Polynomial1D) don't flatten multi-dimensional inputs # when constructing their Vandermonde matrix, which can lead to obscure # failures below. Ultimately, np.linalg.lstsq can't handle >2D matrices, # so just raise a slightly more informative error when this happens: if np.asanyarray(lhs).ndim > 2: raise ValueError( f"{type(model_copy).__name__} gives unsupported >2D " "derivative matrix for this x/y" ) # Subtract any terms fixed by the user from (a copy of) the RHS, in # order to fit the remaining terms correctly: if n_fixed: if model_copy.col_fit_deriv: fixderivs = np.asarray(fixderivs).T # as for lhs above rhs = rhs - fixderivs.dot(fixparams) # evaluate user-fixed terms # Subtract any terms implicit in the model from the RHS, which, like # user-fixed terms, affect the dependent variable but are not fitted: if sum_of_implicit_terms is not None: # If we have a model set, the extra axis must be added to # sum_of_implicit_terms as its innermost dimension, to match the # dimensionality of rhs after _convert_input "rolls" it as needed # by np.linalg.lstsq. The vector then gets broadcast to the right # number of sets (columns). This assumes all the models share the # same input coordinates, as is currently the case. if len(model_copy) > 1: sum_of_implicit_terms = sum_of_implicit_terms[..., np.newaxis] rhs = rhs - sum_of_implicit_terms if weights is not None: if rhs.ndim == 2: if weights.shape == rhs.shape: # separate weights for multiple models case: broadcast # lhs to have more dimension (for each model) lhs = lhs[..., np.newaxis] * weights[:, np.newaxis] rhs = rhs * weights else: lhs *= weights[:, np.newaxis] # Don't modify in-place in case rhs was the original # dependent variable array rhs = rhs * weights[:, np.newaxis] else: lhs *= weights[:, np.newaxis] rhs = rhs * weights scl = (lhs * lhs).sum(0) lhs /= scl masked = np.any(np.ma.getmask(rhs)) if weights is not None and not masked and np.any(np.isnan(lhs)): raise ValueError( "Found NaNs in the coefficient matrix, which " "should not happen and would crash the lapack " "routine. Maybe check that weights are not null." ) a = None # need for calculating covariance if (masked and len(model_copy) > 1) or ( weights is not None and weights.ndim > 1 ): # Separate masks or weights for multiple models case: Numpy's # lstsq supports multiple dimensions only for rhs, so we need to # loop manually on the models. This may be fixed in the future # with https://github.com/numpy/numpy/pull/15777. # Initialize empty array of coefficients and populate it one model # at a time. The shape matches the number of coefficients from the # Vandermonde matrix and the number of models from the RHS: lacoef = np.zeros(lhs.shape[1:2] + rhs.shape[-1:], dtype=rhs.dtype) # Arrange the lhs as a stack of 2D matrices that we can iterate # over to get the correctly-orientated lhs for each model: if lhs.ndim > 2: lhs_stack = np.rollaxis(lhs, -1, 0) else: lhs_stack = np.broadcast_to(lhs, rhs.shape[-1:] + lhs.shape) # Loop over the models and solve for each one. By this point, the # model set axis is the second of two. Transpose rather than using, # say, np.moveaxis(array, -1, 0), since it's slightly faster and # lstsq can't handle >2D arrays anyway. This could perhaps be # optimized by collecting together models with identical masks # (eg. those with no rejected points) into one operation, though it # will still be relatively slow when calling lstsq repeatedly. for model_lhs, model_rhs, model_lacoef in zip(lhs_stack, rhs.T, lacoef.T): # Cull masked points on both sides of the matrix equation: good = ~model_rhs.mask if masked else slice(None) model_lhs = model_lhs[good] model_rhs = model_rhs[good][..., np.newaxis] a = model_lhs # Solve for this model: t_coef, resids, rank, sval = np.linalg.lstsq( model_lhs, model_rhs, rcond ) model_lacoef[:] = t_coef.T else: # If we're fitting one or more models over a common set of points, # we only have to solve a single matrix equation, which is an order # of magnitude faster than calling lstsq() once per model below: good = ~rhs.mask if masked else slice(None) # latter is a no-op a = lhs[good] # Solve for one or more models: lacoef, resids, rank, sval = np.linalg.lstsq(lhs[good], rhs[good], rcond) self.fit_info["residuals"] = resids self.fit_info["rank"] = rank self.fit_info["singular_values"] = sval lacoef /= scl[:, np.newaxis] if scl.ndim < rhs.ndim else scl self.fit_info["params"] = lacoef fitter_to_model_params(model_copy, lacoef.ravel()) # TODO: Only Polynomial models currently have an _order attribute; # maybe change this to read isinstance(model, PolynomialBase) if ( hasattr(model_copy, "_order") and len(model_copy) == 1 and rank < (model_copy._order - n_fixed) ): warnings.warn("The fit may be poorly conditioned\n", AstropyUserWarning) # calculate and set covariance matrix and standard devs. on model if self._calc_uncertainties: if len(y) > len(lacoef): self._add_fitting_uncertainties( model_copy, a * scl, len(lacoef), x, y, z, resids ) model_copy.sync_constraints = True return model_copy
[docs] class FittingWithOutlierRemoval: """ This class combines an outlier removal technique with a fitting procedure. Basically, given a maximum number of iterations ``niter``, outliers are removed and fitting is performed for each iteration, until no new outliers are found or ``niter`` is reached. Parameters ---------- fitter : `Fitter` An instance of any Astropy fitter, i.e., LinearLSQFitter, LevMarLSQFitter, SLSQPLSQFitter, SimplexLSQFitter, JointFitter. For model set fitting, this must understand masked input data (as indicated by the fitter class attribute ``supports_masked_input``). outlier_func : callable A function for outlier removal. If this accepts an ``axis`` parameter like the `numpy` functions, the appropriate value will be supplied automatically when fitting model sets (unless overridden in ``outlier_kwargs``), to find outliers for each model separately; otherwise, the same filtering must be performed in a loop over models, which is almost an order of magnitude slower. niter : int, optional Maximum number of iterations. outlier_kwargs : dict, optional Keyword arguments for outlier_func. Attributes ---------- fit_info : dict The ``fit_info`` (if any) from the last iteration of the wrapped ``fitter`` during the most recent fit. An entry is also added with the keyword ``niter`` that records the actual number of fitting iterations performed (as opposed to the user-specified maximum). """ def __init__(self, fitter, outlier_func, niter=3, **outlier_kwargs): self.fitter = fitter self.outlier_func = outlier_func self.niter = niter self.outlier_kwargs = outlier_kwargs self.fit_info = {"niter": None} def __str__(self): return ( f"Fitter: {self.fitter.__class__.__name__}\n" f"Outlier function: {self.outlier_func.__name__}\n" f"Num. of iterations: {self.niter}\n" f"Outlier func. args.: {self.outlier_kwargs}" ) def __repr__(self): return ( f"{self.__class__.__name__}(fitter: {self.fitter.__class__.__name__}, " f"outlier_func: {self.outlier_func.__name__}," f" niter: {self.niter}, outlier_kwargs: {self.outlier_kwargs})" )
[docs] def __call__(self, model, x, y, z=None, weights=None, *, inplace=False, **kwargs): """ Parameters ---------- model : `~astropy.modeling.FittableModel` An analytic model which will be fit to the provided data. This also contains the initial guess for an optimization algorithm. x : array-like Input coordinates. y : array-like Data measurements (1D case) or input coordinates (2D case). z : array-like, optional Data measurements (2D case). weights : array-like, optional Weights to be passed to the fitter. kwargs : dict, optional Keyword arguments to be passed to the fitter. inplace : bool, optional If `False` (the default), a copy of the model with the fitted parameters set will be returned. If `True`, the returned model will be the same instance as the model passed in, and the parameter values will be changed inplace. Returns ------- fitted_model : `~astropy.modeling.FittableModel` If ``inplace`` is `False` (the default), this is a copy of the input model with parameters set by the fitter. If ``inplace`` is `True`, this is the same model as the input model, with parameters updated to be those set by the fitter. mask : `numpy.ndarray` Boolean mask array, identifying which points were used in the final fitting iteration (False) and which were found to be outliers or were masked in the input (True). """ # For single models, the data get filtered here at each iteration and # then passed to the fitter, which is the historical behavior and # works even for fitters that don't understand masked arrays. For model # sets, the fitter must be able to filter masked data internally, # because fitters require a single set of x/y coordinates whereas the # eliminated points can vary between models. To avoid this limitation, # we could fall back to looping over individual model fits, but it # would likely be fiddly and involve even more overhead (and the # non-linear fitters don't work with model sets anyway, as of writing). if len(model) == 1: model_set_axis = None else: if ( not hasattr(self.fitter, "supports_masked_input") or self.fitter.supports_masked_input is not True ): raise ValueError( f"{type(self.fitter).__name__} cannot fit model sets with masked " "values" ) # Fitters use their input model's model_set_axis to determine how # their input data are stacked: model_set_axis = model.model_set_axis # Construct input coordinate tuples for fitters & models that are # appropriate for the dimensionality being fitted: if z is None: coords = (x,) data = y else: coords = x, y data = z # For model sets, construct a numpy-standard "axis" tuple for the # outlier function, to treat each model separately (if supported): if model_set_axis is not None: if model_set_axis < 0: model_set_axis += data.ndim if "axis" not in self.outlier_kwargs: # allow user override # This also works for False (like model instantiation): self.outlier_kwargs["axis"] = tuple( n for n in range(data.ndim) if n != model_set_axis ) loop = False # Starting fit, prior to any iteration and masking: fitted_model = self.fitter( model, x, y, z, weights=weights, inplace=inplace, **kwargs ) filtered_data = np.ma.masked_array(data) if filtered_data.mask is np.ma.nomask: filtered_data.mask = False filtered_weights = weights last_n_masked = filtered_data.mask.sum() n = 0 # (allow recording no. of iterations when 0) # Perform the iterative fitting: for n in range(1, self.niter + 1): # (Re-)evaluate the last model: model_vals = fitted_model(*coords, model_set_axis=False) # Determine the outliers: if not loop: # Pass axis parameter if outlier_func accepts it, otherwise # prepare for looping over models: try: filtered_data = self.outlier_func( filtered_data - model_vals, **self.outlier_kwargs ) # If this happens to catch an error with a parameter other # than axis, the next attempt will fail accordingly: except TypeError: if model_set_axis is None: raise else: self.outlier_kwargs.pop("axis", None) loop = True # Construct MaskedArray to hold filtered values: filtered_data = np.ma.masked_array( filtered_data, dtype=np.result_type(filtered_data, model_vals), copy=True, ) # Make sure the mask is an array, not just nomask: if filtered_data.mask is np.ma.nomask: filtered_data.mask = False # Get views transposed appropriately for iteration # over the set (handling data & mask separately due to # NumPy issue #8506): data_T = np.rollaxis(filtered_data, model_set_axis, 0) mask_T = np.rollaxis(filtered_data.mask, model_set_axis, 0) if loop: model_vals_T = np.rollaxis(model_vals, model_set_axis, 0) for row_data, row_mask, row_mod_vals in zip( data_T, mask_T, model_vals_T ): masked_residuals = self.outlier_func( row_data - row_mod_vals, **self.outlier_kwargs ) row_data.data[:] = masked_residuals.data row_mask[:] = masked_residuals.mask # Issue speed warning after the fact, so it only shows up when # the TypeError is genuinely due to the axis argument. warnings.warn( "outlier_func did not accept axis argument; " "reverted to slow loop over models.", AstropyUserWarning, ) # Recombine newly-masked residuals with model to get masked values: filtered_data += model_vals # Re-fit the data after filtering, passing masked/unmasked values # for single models / sets, respectively: if model_set_axis is None: good = ~filtered_data.mask if weights is not None: filtered_weights = weights[good] fitted_model = self.fitter( fitted_model, *(c[good] for c in coords), filtered_data.data[good], weights=filtered_weights, inplace=inplace, **kwargs, ) else: fitted_model = self.fitter( fitted_model, *coords, filtered_data, weights=filtered_weights, inplace=inplace, **kwargs, ) # Stop iteration if the masked points are no longer changing (with # cumulative rejection we only need to compare how many there are): this_n_masked = filtered_data.mask.sum() # (minimal overhead) if this_n_masked == last_n_masked: break last_n_masked = this_n_masked self.fit_info = {"niter": n} self.fit_info.update(getattr(self.fitter, "fit_info", {})) return fitted_model, filtered_data.mask
class _NonLinearLSQFitter(Fitter): """ Base class for Non-Linear least-squares fitters. Parameters ---------- calc_uncertainties : bool If the covariance matrix should be computed and set in the fit_info. Default: False use_min_max_bounds : bool If set, the parameter bounds for a model will be enforced for each given parameter while fitting via a simple min/max condition. Default: True """ supported_constraints = ["fixed", "tied", "bounds"] """ The constraint types supported by this fitter type. """ def __init__(self, calc_uncertainties=False, use_min_max_bounds=True): self.fit_info = None self._calc_uncertainties = calc_uncertainties self._use_min_max_bounds = use_min_max_bounds def objective_function(self, fps, *args, fit_param_indices=None): """ Function to minimize. Parameters ---------- fps : list parameters returned by the fitter args : list [model, [weights], [input coordinates]] fit_param_indices : list, optional The ``fit_param_indices`` as returned by ``model_to_fit_params``. This is a list of the parameter indices being fit, so excluding any tied or fixed parameters. This can be passed in to the objective function to prevent it having to be computed on every call. This must be optional as not all fitters support passing kwargs to the objective function. """ model = args[0] weights = args[1] inputs = args[2:-1] meas = args[-1] fps = fitter_to_model_params_array( model, fps, self._use_min_max_bounds, fit_param_indices=fit_param_indices, ) if weights is None: value = np.ravel(model.evaluate(*inputs, *fps) - meas) else: value = np.ravel(weights * (model.evaluate(*inputs, *fps) - meas)) if not np.all(np.isfinite(value)): raise NonFiniteValueError( "Objective function has encountered a non-finite value, " "this will cause the fit to fail!\n" "Please remove non-finite values from your input data before " "fitting to avoid this error." ) return value @staticmethod def _add_fitting_uncertainties(model, cov_matrix): """ Set ``cov_matrix`` and ``stds`` attributes on model with parameter covariance matrix returned by ``optimize.leastsq``. """ free_param_names = [ x for x in model.fixed if (model.fixed[x] is False) and (model.tied[x] is False) ] model.cov_matrix = Covariance(cov_matrix, free_param_names) model.stds = StandardDeviations(cov_matrix, free_param_names) @staticmethod def _wrap_deriv(params, model, weights, x, y, z=None, fit_param_indices=None): """ Wraps the method calculating the Jacobian of the function to account for model constraints. `scipy.optimize.leastsq` expects the function derivative to have the above signature (parlist, (argtuple)). In order to accommodate model constraints, instead of using p directly, we set the parameter list in this function. """ if weights is None: weights = 1.0 if model.has_fixed or model.has_tied: # update the parameters with the current values from the fitter fitter_to_model_params(model, params) if z is None: full = np.array(model.fit_deriv(x, *model.parameters)) if not model.col_fit_deriv: full_deriv = np.ravel(weights) * full.T else: full_deriv = np.ravel(weights) * full else: full = np.array( [np.ravel(_) for _ in model.fit_deriv(x, y, *model.parameters)] ) if not model.col_fit_deriv: full_deriv = np.ravel(weights) * full.T else: full_deriv = np.ravel(weights) * full pars = [getattr(model, name) for name in model.param_names] fixed = [par.fixed for par in pars] tied = [par.tied for par in pars] tied = list(np.where([par.tied is not False for par in pars], True, tied)) fix_and_tie = np.logical_or(fixed, tied) ind = np.logical_not(fix_and_tie) if not model.col_fit_deriv: residues = np.asarray(full_deriv[np.nonzero(ind)]).T else: residues = full_deriv[np.nonzero(ind)] return [np.ravel(_) for _ in residues] else: if z is None: fit_deriv = np.array(model.fit_deriv(x, *params)) try: output = np.array( [np.ravel(_) for _ in np.array(weights) * fit_deriv] ) if output.shape != fit_deriv.shape: output = np.array( [np.ravel(_) for _ in np.atleast_2d(weights).T * fit_deriv] ) return output except ValueError: return np.array( [ np.ravel(_) for _ in np.array(weights) * np.moveaxis(fit_deriv, -1, 0) ] ).transpose() else: if not model.col_fit_deriv: return [ np.ravel(_) for _ in ( np.ravel(weights) * np.array(model.fit_deriv(x, y, *params)).T ).T ] return [ np.ravel(_) for _ in weights * np.array(model.fit_deriv(x, y, *params)) ] def _compute_param_cov( self, model, y, init_values, cov_x, fitparams, farg, fkwarg, weights=None ): # now try to compute the true covariance matrix if (len(y) > len(init_values)) and cov_x is not None: self.fit_info["param_cov"] = cov_x if weights is None: # if there are no measurement uncertainties given in `weights`, # fall back on the default behavior in scipy.optimize.curve_fit # when `absolute_sigma == False`. If there are uncertainties, # assume they are "absolute" and not "relative". # For details, see curve_fit: # https://github.com/scipy/scipy/blob/ # c1ed5ece8ffbf05356a22a8106affcd11bd3aee0/scipy/ # optimize/_minpack_py.py#L591-L602 sum_sqrs = np.sum( self.objective_function(fitparams, *farg, **fkwarg) ** 2 ) dof = len(y) - len(init_values) self.fit_info["param_cov"] *= sum_sqrs / dof else: self.fit_info["param_cov"] = None if self._calc_uncertainties is True: if self.fit_info["param_cov"] is not None: self._add_fitting_uncertainties(model, self.fit_info["param_cov"]) def _run_fitter( self, model, farg, fkwarg, maxiter, acc, epsilon, estimate_jacobian ): return None, None, None def _filter_non_finite(self, x, y, z=None, weights=None): """ Filter out non-finite values in x, y, z. Returns ------- x, y, z : ndarrays x, y, and z with non-finite values filtered out. """ MESSAGE = "Non-Finite input data has been removed by the fitter." mask = np.ones_like(x, dtype=bool) if weights is None else np.isfinite(weights) mask &= np.isfinite(y) if z is None else np.isfinite(z) if not np.all(mask): warnings.warn(MESSAGE, AstropyUserWarning) return ( x[mask], y[mask], None if z is None else z[mask], None if weights is None else weights[mask], ) @fitter_unit_support def __call__( self, model, x, y, z=None, weights=None, maxiter=DEFAULT_MAXITER, acc=DEFAULT_ACC, epsilon=DEFAULT_EPS, estimate_jacobian=False, filter_non_finite=False, *, inplace=False, ): """ Fit data to this model. Parameters ---------- model : `~astropy.modeling.FittableModel` model to fit to x, y, z x : array input coordinates y : array input coordinates z : array, optional input coordinates weights : array, optional Weights for fitting. For data with Gaussian uncertainties, the weights should be 1/sigma. .. versionchanged:: 5.3 Calculate parameter covariances while accounting for ``weights`` as "absolute" inverse uncertainties. To recover the old behavior, choose ``weights=None``. maxiter : int maximum number of iterations acc : float Relative error desired in the approximate solution epsilon : float A suitable step length for the forward-difference approximation of the Jacobian (if model.fjac=None). If epsfcn is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision. estimate_jacobian : bool If False (default) and if the model has a fit_deriv method, it will be used. Otherwise the Jacobian will be estimated. If True, the Jacobian will be estimated in any case. equivalencies : list or None, optional, keyword-only List of *additional* equivalencies that are should be applied in case x, y and/or z have units. Default is None. filter_non_finite : bool, optional Whether or not to filter data with non-finite values. Default is False inplace : bool, optional If `False` (the default), a copy of the model with the fitted parameters set will be returned. If `True`, the returned model will be the same instance as the model passed in, and the parameter values will be changed inplace. Returns ------- fitted_model : `~astropy.modeling.FittableModel` If ``inplace`` is `False` (the default), this is a copy of the input model with parameters set by the fitter. If ``inplace`` is `True`, this is the same model as the input model, with parameters updated to be those set by the fitter. """ model_copy = _validate_model( model, self.supported_constraints, copy=not inplace, ) model_copy.sync_constraints = False _, fit_param_indices, _ = model_to_fit_params(model_copy) if filter_non_finite: x, y, z, weights = self._filter_non_finite(x, y, z, weights) farg = ( model_copy, weights, ) + _convert_input(x, y, z) fkwarg = {"fit_param_indices": set(fit_param_indices)} init_values, fitparams, cov_x = self._run_fitter( model_copy, farg, fkwarg, maxiter, acc, epsilon, estimate_jacobian ) self._compute_param_cov( model_copy, y, init_values, cov_x, fitparams, farg, fkwarg, weights ) model_copy.sync_constraints = True return model_copy
[docs] class LevMarLSQFitter(_NonLinearLSQFitter): """ Levenberg-Marquardt algorithm and least squares statistic. .. warning: This fitter is no longer recommended - instead you should make use of `LMLSQFitter` if your model does not have bounds, or one of the other non-linear fitters, such as `TRFLSQFitter` otherwise. For more details, see the main documentation page on fitting. Parameters ---------- calc_uncertainties : bool If the covariance matrix should be computed and set in the fit_info. Default: False Attributes ---------- fit_info : dict The `scipy.optimize.leastsq` result for the most recent fit (see notes). Notes ----- The ``fit_info`` dictionary contains the values returned by `scipy.optimize.leastsq` for the most recent fit, including the values from the ``infodict`` dictionary it returns. See the `scipy.optimize.leastsq` documentation for details on the meaning of these values. Note that the ``x`` return value is *not* included (as it is instead the parameter values of the returned model). Additionally, one additional element of ``fit_info`` is computed whenever a model is fit, with the key 'param_cov'. The corresponding value is the covariance matrix of the parameters as a 2D numpy array. The order of the matrix elements matches the order of the parameters in the fitted model (i.e., the same order as ``model.param_names``). """ def __init__(self, calc_uncertainties=False): super().__init__(calc_uncertainties) self.fit_info = { "nfev": None, "fvec": None, "fjac": None, "ipvt": None, "qtf": None, "message": None, "ierr": None, "param_jac": None, "param_cov": None, } def _run_fitter( self, model, farg, fkwarg, maxiter, acc, epsilon, estimate_jacobian ): from scipy import optimize if model.fit_deriv is None or estimate_jacobian: dfunc = None else: dfunc = self._wrap_deriv init_values, _, _ = model_to_fit_params(model) fitparams, cov_x, dinfo, mess, ierr = optimize.leastsq( self.objective_function, init_values, args=farg, Dfun=dfunc, col_deriv=model.col_fit_deriv, maxfev=maxiter, epsfcn=epsilon, xtol=acc, full_output=True, ) fitter_to_model_params(model, fitparams) self.fit_info.update(dinfo) self.fit_info["cov_x"] = cov_x self.fit_info["message"] = mess self.fit_info["ierr"] = ierr if ierr not in [1, 2, 3, 4]: warnings.warn( "The fit may be unsuccessful; check " "fit_info['message'] for more information.", AstropyUserWarning, ) return init_values, fitparams, cov_x
class _NLLSQFitter(_NonLinearLSQFitter): """ Wrapper class for `scipy.optimize.least_squares` method, which provides: - Trust Region Reflective - dogbox - Levenberg-Marquardt algorithms using the least squares statistic. Parameters ---------- method : str ‘trf’ : Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method. ‘dogbox’ : dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian. ‘lm’ : Levenberg-Marquardt algorithm as implemented in MINPACK. Doesn’t handle bounds and sparse Jacobians. Usually the most efficient method for small unconstrained problems. calc_uncertainties : bool If the covariance matrix should be computed and set in the fit_info. Default: False use_min_max_bounds: bool If set, the parameter bounds for a model will be enforced for each given parameter while fitting via a simple min/max condition. A True setting will replicate how LevMarLSQFitter enforces bounds. Default: False Attributes ---------- fit_info : A `scipy.optimize.OptimizeResult` class which contains all of the most recent fit information """ def __init__(self, method, calc_uncertainties=False, use_min_max_bounds=False): super().__init__(calc_uncertainties, use_min_max_bounds) self._method = method def _run_fitter( self, model, farg, fkwarg, maxiter, acc, epsilon, estimate_jacobian ): from scipy import optimize from scipy.linalg import svd if model.fit_deriv is None or estimate_jacobian: dfunc = "2-point" else: def _dfunc(params, model, weights, *args, **context): if model.col_fit_deriv: return np.transpose( self._wrap_deriv( params, model, weights, *args, fit_param_indices=None ) ) else: return self._wrap_deriv( params, model, weights, *args, fit_param_indices=None ) dfunc = _dfunc init_values, _, bounds = model_to_fit_params(model) # Note, if use_min_max_bounds is True we are defaulting to enforcing bounds # using the old method employed by LevMarLSQFitter, this is different # from the method that optimize.least_squares employs to enforce bounds # thus we override the bounds being passed to optimize.least_squares so # that it will not enforce any bounding. if self._use_min_max_bounds: bounds = (-np.inf, np.inf) self.fit_info = optimize.least_squares( self.objective_function, init_values, args=farg, kwargs=fkwarg, jac=dfunc, max_nfev=maxiter, diff_step=np.sqrt(epsilon), xtol=acc, method=self._method, bounds=bounds, ) # Adapted from ~scipy.optimize.minpack, see: # https://github.com/scipy/scipy/blob/47bb6febaa10658c72962b9615d5d5aa2513fa3a/scipy/optimize/minpack.py#L795-L816 # Do Moore-Penrose inverse discarding zero singular values. _, s, VT = svd(self.fit_info.jac, full_matrices=False) threshold = np.finfo(float).eps * max(self.fit_info.jac.shape) * s[0] s = s[s > threshold] VT = VT[: s.size] cov_x = np.dot(VT.T / s**2, VT) fitter_to_model_params(model, self.fit_info.x, False) if not self.fit_info.success: warnings.warn( f"The fit may be unsuccessful; check: \n {self.fit_info.message}", AstropyUserWarning, ) return init_values, self.fit_info.x, cov_x
[docs] class TRFLSQFitter(_NLLSQFitter): """ Trust Region Reflective algorithm and least squares statistic. Parameters ---------- calc_uncertainties : bool If the covariance matrix should be computed and set in the fit_info. Default: False Attributes ---------- fit_info : A `scipy.optimize.OptimizeResult` class which contains all of the most recent fit information """ @deprecated_renamed_argument("use_min_max_bounds", None, "7.0") def __init__(self, calc_uncertainties=False, use_min_max_bounds=False): super().__init__("trf", calc_uncertainties, use_min_max_bounds)
[docs] class DogBoxLSQFitter(_NLLSQFitter): """ DogBox algorithm and least squares statistic. Parameters ---------- calc_uncertainties : bool If the covariance matrix should be computed and set in the fit_info. Default: False Attributes ---------- fit_info : A `scipy.optimize.OptimizeResult` class which contains all of the most recent fit information """ @deprecated_renamed_argument("use_min_max_bounds", None, "7.0") def __init__(self, calc_uncertainties=False, use_min_max_bounds=False): super().__init__("dogbox", calc_uncertainties, use_min_max_bounds)
[docs] class LMLSQFitter(_NLLSQFitter): """ `scipy.optimize.least_squares` Levenberg-Marquardt algorithm and least squares statistic. Parameters ---------- calc_uncertainties : bool If the covariance matrix should be computed and set in the fit_info. Default: False Attributes ---------- fit_info : A `scipy.optimize.OptimizeResult` class which contains all of the most recent fit information """ def __init__(self, calc_uncertainties=False): super().__init__("lm", calc_uncertainties, True)
[docs] @fitter_unit_support def __call__( self, model, x, y, z=None, weights=None, maxiter=DEFAULT_MAXITER, acc=DEFAULT_ACC, epsilon=DEFAULT_EPS, estimate_jacobian=False, filter_non_finite=False, inplace=False, ): # Since there are several fitters with proper support for bounds, it # is not a good idea to keep supporting the hacky bounds algorithm # from LevMarLSQFitter here, and better to communicate with users # that they should use another fitter. Once we remove the deprecation, # we should update ``supported_constraints`` and change ``True`` to # ``False`` in the call to ``super().__init__`` above. if model.has_bounds: warnings.warn( "Using LMLSQFitter for models with bounds is now " "deprecated since astropy 7.0. We recommend you use another non-linear " "fitter such as TRFLSQFitter or DogBoxLSQFitter instead " "as these have full support for fitting models with " "bounds", AstropyDeprecationWarning, stacklevel=2, ) return super().__call__( model, x, y, z=z, weights=weights, maxiter=maxiter, acc=acc, epsilon=epsilon, estimate_jacobian=estimate_jacobian, filter_non_finite=filter_non_finite, inplace=inplace, )
[docs] class SLSQPLSQFitter(Fitter): """ Sequential Least Squares Programming (SLSQP) optimization algorithm and least squares statistic. Raises ------ ModelLinearityError A linear model is passed to a nonlinear fitter Notes ----- See also the `~astropy.modeling.optimizers.SLSQP` optimizer. """ supported_constraints = SLSQP.supported_constraints def __init__(self): super().__init__(optimizer=SLSQP, statistic=leastsquare) self.fit_info = {}
[docs] @fitter_unit_support def __call__( self, model, x, y, z=None, weights=None, *, inplace=False, **kwargs, ): """ Fit data to this model. Parameters ---------- model : `~astropy.modeling.FittableModel` model to fit to x, y, z x : array input coordinates y : array input coordinates z : array, optional input coordinates weights : array, optional Weights for fitting. For data with Gaussian uncertainties, the weights should be 1/sigma. inplace : bool, optional If `False` (the default), a copy of the model with the fitted parameters set will be returned. If `True`, the returned model will be the same instance as the model passed in, and the parameter values will be changed inplace. kwargs : dict optional keyword arguments to be passed to the optimizer or the statistic verblevel : int 0-silent 1-print summary upon completion, 2-print summary after each iteration maxiter : int maximum number of iterations epsilon : float the step size for finite-difference derivative estimates acc : float Requested accuracy equivalencies : list or None, optional, keyword-only List of *additional* equivalencies that are should be applied in case x, y and/or z have units. Default is None. Returns ------- fitted_model : `~astropy.modeling.FittableModel` If ``inplace`` is `False` (the default), this is a copy of the input model with parameters set by the fitter. If ``inplace`` is `True`, this is the same model as the input model, with parameters updated to be those set by the fitter. """ model_copy = _validate_model( model, self._opt_method.supported_constraints, copy=not inplace, ) model_copy.sync_constraints = False farg = _convert_input(x, y, z) farg = ( model_copy, weights, ) + farg init_values, _, _ = model_to_fit_params(model_copy) fitparams, self.fit_info = self._opt_method( self.objective_function, init_values, farg, **kwargs ) fitter_to_model_params(model_copy, fitparams) model_copy.sync_constraints = True return model_copy
[docs] class SimplexLSQFitter(Fitter): """ Simplex algorithm and least squares statistic. Raises ------ `ModelLinearityError` A linear model is passed to a nonlinear fitter """ supported_constraints = Simplex.supported_constraints def __init__(self): super().__init__(optimizer=Simplex, statistic=leastsquare) self.fit_info = {}
[docs] @fitter_unit_support def __call__( self, model, x, y, z=None, weights=None, *, inplace=False, **kwargs, ): """ Fit data to this model. Parameters ---------- model : `~astropy.modeling.FittableModel` model to fit to x, y, z x : array input coordinates y : array input coordinates z : array, optional input coordinates weights : array, optional Weights for fitting. For data with Gaussian uncertainties, the weights should be 1/sigma. kwargs : dict optional keyword arguments to be passed to the optimizer or the statistic maxiter : int maximum number of iterations acc : float Relative error in approximate solution equivalencies : list or None, optional, keyword-only List of *additional* equivalencies that are should be applied in case x, y and/or z have units. Default is None. inplace : bool, optional If `False` (the default), a copy of the model with the fitted parameters set will be returned. If `True`, the returned model will be the same instance as the model passed in, and the parameter values will be changed inplace. Returns ------- fitted_model : `~astropy.modeling.FittableModel` If ``inplace`` is `False` (the default), this is a copy of the input model with parameters set by the fitter. If ``inplace`` is `True`, this is the same model as the input model, with parameters updated to be those set by the fitter. """ model_copy = _validate_model( model, self._opt_method.supported_constraints, copy=not inplace, ) model_copy.sync_constraints = False farg = _convert_input(x, y, z) farg = ( model_copy, weights, ) + farg init_values, _, _ = model_to_fit_params(model_copy) fitparams, self.fit_info = self._opt_method( self.objective_function, init_values, farg, **kwargs ) fitter_to_model_params(model_copy, fitparams) model_copy.sync_constraints = True return model_copy
[docs] class JointFitter(Fitter): """ Fit models which share a parameter. For example, fit two gaussians to two data sets but keep the FWHM the same. Parameters ---------- models : list a list of model instances jointparameters : list a list of joint parameters initvals : list a list of initial values """ def __init__(self, models, jointparameters, initvals): self.models = list(models) self.initvals = list(initvals) self.jointparams = jointparameters self._verify_input() self.fitparams = self.model_to_fit_params() # a list of model.n_inputs self.modeldims = [m.n_inputs for m in self.models] # sum all model dimensions self.ndim = np.sum(self.modeldims)
[docs] def model_to_fit_params(self): fparams = [] fparams.extend(self.initvals) for model in self.models: params = model.parameters.tolist() joint_params = self.jointparams[model] param_metrics = model._param_metrics for param_name in joint_params: slice_ = param_metrics[param_name]["slice"] del params[slice_] fparams.extend(params) return fparams
[docs] def objective_function(self, fps, *args): """ Function to minimize. Parameters ---------- fps : list the fitted parameters - result of an one iteration of the fitting algorithm args : dict tuple of measured and input coordinates args is always passed as a tuple from optimize.leastsq """ lstsqargs = list(args) fitted = [] fitparams = list(fps) numjp = len(self.initvals) # make a separate list of the joint fitted parameters jointfitparams = fitparams[:numjp] del fitparams[:numjp] for model in self.models: joint_params = self.jointparams[model] margs = lstsqargs[: model.n_inputs + 1] del lstsqargs[: model.n_inputs + 1] # separate each model separately fitted parameters numfp = len(model._parameters) - len(joint_params) mfparams = fitparams[:numfp] del fitparams[:numfp] # recreate the model parameters mparams = [] param_metrics = model._param_metrics for param_name in model.param_names: if param_name in joint_params: index = joint_params.index(param_name) # should do this with slices in case the # parameter is not a number mparams.extend([jointfitparams[index]]) else: slice_ = param_metrics[param_name]["slice"] plen = slice_.stop - slice_.start mparams.extend(mfparams[:plen]) del mfparams[:plen] modelfit = model.evaluate(margs[:-1], *mparams) fitted.extend(modelfit - margs[-1]) return np.ravel(fitted)
def _verify_input(self): if len(self.models) <= 1: raise TypeError(f"Expected >1 models, {len(self.models)} is given") if len(self.jointparams.keys()) < 2: raise TypeError( "At least two parameters are expected, " f"{len(self.jointparams.keys())} is given" ) for j in self.jointparams.keys(): if len(self.jointparams[j]) != len(self.initvals): raise TypeError( f"{len(self.jointparams[j])} parameter(s) " f"provided but {len(self.initvals)} expected" )
[docs] def __call__(self, *args): """ Fit data to these models keeping some of the parameters common to the two models. """ from scipy import optimize if len(args) != reduce(lambda x, y: x + 1 + y + 1, self.modeldims): raise ValueError( f"Expected {reduce(lambda x, y: x + 1 + y + 1, self.modeldims)} " f"coordinates in args but {len(args)} provided" ) self.fitparams[:], _ = optimize.leastsq( self.objective_function, self.fitparams, args=args ) fparams = self.fitparams[:] numjp = len(self.initvals) # make a separate list of the joint fitted parameters jointfitparams = fparams[:numjp] del fparams[:numjp] for model in self.models: # extract each model's fitted parameters joint_params = self.jointparams[model] numfp = len(model._parameters) - len(joint_params) mfparams = fparams[:numfp] del fparams[:numfp] # recreate the model parameters mparams = [] param_metrics = model._param_metrics for param_name in model.param_names: if param_name in joint_params: index = joint_params.index(param_name) # should do this with slices in case the parameter # is not a number mparams.extend([jointfitparams[index]]) else: slice_ = param_metrics[param_name]["slice"] plen = slice_.stop - slice_.start mparams.extend(mfparams[:plen]) del mfparams[:plen] model.parameters = np.array(mparams)
def _convert_input(x, y, z=None, n_models=1, model_set_axis=0): """Convert inputs to float arrays.""" x = np.asanyarray(x, dtype=float) y = np.asanyarray(y, dtype=float) if z is not None: z = np.asanyarray(z, dtype=float) data_ndim, data_shape = z.ndim, z.shape else: data_ndim, data_shape = y.ndim, y.shape # For compatibility with how the linear fitter code currently expects to # work, shift the dependent variable's axes to the expected locations if n_models > 1 or data_ndim > x.ndim: if (model_set_axis or 0) >= data_ndim: raise ValueError("model_set_axis out of range") if data_shape[model_set_axis] != n_models: raise ValueError( "Number of data sets (y or z array) is expected to equal " "the number of parameter sets" ) if z is None: # For a 1-D model the y coordinate's model-set-axis is expected to # be last, so that its first dimension is the same length as the x # coordinates. This is in line with the expectations of # numpy.linalg.lstsq: # https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html # That is, each model should be represented by a column. TODO: # Obviously this is a detail of np.linalg.lstsq and should be # handled specifically by any fitters that use it... y = np.rollaxis(y, model_set_axis, y.ndim) data_shape = y.shape[:-1] else: # Shape of z excluding model_set_axis data_shape = z.shape[:model_set_axis] + z.shape[model_set_axis + 1 :] if z is None: if data_shape != x.shape: raise ValueError("x and y should have the same shape") farg = (x, y) else: if not (x.shape == y.shape == data_shape): raise ValueError("x, y and z should have the same shape") farg = (x, y, z) return farg # TODO: These utility functions are really particular to handling # bounds/tied/fixed constraints for scipy.optimize optimizers that do not # support them inherently; this needs to be reworked to be clear about this # distinction (and the fact that these are not necessarily applicable to any # arbitrary fitter--as evidenced for example by the fact that JointFitter has # its own versions of these) def fitter_to_model_params_array( model, fps, use_min_max_bounds=True, *, fit_param_indices=None ): """ Constructs the full list of model parameters from the fitted and constrained parameters. Parameters ---------- model : The model being fit fps : The fit parameter values to be assigned use_min_max_bounds: bool If set, the parameter bounds for the model will be enforced on each parameter with bounds. Default: True """ has_tied = model.has_tied has_bound = use_min_max_bounds and model.has_bounds if not (has_tied or model.has_fixed or has_bound): return fps bounds = model.bounds param_metrics = model._param_metrics parameters = np.empty(sum(m["size"] for m in param_metrics.values()), dtype=float) if fit_param_indices is None: _, fit_param_indices, _ = model_to_fit_params(model) offset = 0 for idx, name in enumerate(model.param_names): metrics = param_metrics[name] slice_ = metrics["slice"] if idx not in fit_param_indices: parameters[slice_] = getattr(model, name).value continue shape = metrics["shape"] size = metrics["size"] values = fps[offset : offset + size] # Check bounds constraints bound = bounds[name] if has_bound and bound != (None, None): _min, _max = bound if _min is not None: values = np.fmax(values, _min) if _max is not None: values = np.fmin(values, _max) parameters[slice_] = values offset += size # This has to be done in a separate loop due to how tied parameters are # currently evaluated (the fitted parameters need to actually be *set* on # the model first, for use in evaluating the "tied" expression--it might be # better to change this at some point if has_tied: # Update model parameters before calling ``tied`` constraints. model.parameters = parameters for idx, name in enumerate(model.param_names): if model.tied[name]: value = model.tied[name](model) slice_ = param_metrics[name]["slice"] # To handle multiple tied constraints, model parameters # need to be updated after each iteration. parameters[slice_] = value model._array_to_parameters() return parameters def fitter_to_model_params(model, fps, use_min_max_bounds=True): """ Constructs the full list of model parameters from the fitted and constrained parameters. Parameters ---------- model : The model being fit fps : The fit parameter values to be assigned use_min_max_bounds: bool If set, the parameter bounds for the model will be enforced on each parameter with bounds. Default: True """ _, fit_param_indices, _ = model_to_fit_params(model) parameters = fitter_to_model_params_array( model, fps, use_min_max_bounds, fit_param_indices=fit_param_indices ) model.parameters = parameters def model_to_fit_params(model): """ Convert a model instance's parameter array to an array that can be used with a fitter that doesn't natively support fixed or tied parameters. In particular, it removes fixed/tied parameters from the parameter array. These may be a subset of the model parameters, if some of them are held constant or tied. """ fit_param_indices = list(range(len(model.param_names))) model_params = model.parameters model_bounds = list(model.bounds.values()) if model.has_fixed or model.has_tied: params = list(model_params) param_metrics = model._param_metrics for idx, name in list(enumerate(model.param_names))[::-1]: if model.fixed[name] or model.tied[name]: slice_ = param_metrics[name]["slice"] del params[slice_] del model_bounds[slice_] del fit_param_indices[idx] model_params = np.array(params) for idx, bound in enumerate(model_bounds): if bound[0] is None: lower = -np.inf else: lower = bound[0] if bound[1] is None: upper = np.inf else: upper = bound[1] model_bounds[idx] = (lower, upper) model_bounds = tuple(zip(*model_bounds)) return model_params, fit_param_indices, model_bounds def _validate_constraints(supported_constraints, model): """Make sure model constraints are supported by the current fitter.""" message = "Optimizer cannot handle {0} constraints." if model.has_fixed and "fixed" not in supported_constraints: raise UnsupportedConstraintError(message.format("fixed parameter")) if model.has_tied and "tied" not in supported_constraints: raise UnsupportedConstraintError(message.format("tied parameter")) if model.has_bounds and "bounds" not in supported_constraints: raise UnsupportedConstraintError(message.format("bound parameter")) if model.eqcons and "eqcons" not in supported_constraints: raise UnsupportedConstraintError(message.format("equality")) if model.ineqcons and "ineqcons" not in supported_constraints: raise UnsupportedConstraintError(message.format("inequality")) def _validate_model(model, supported_constraints, copy=True): """ Check that model and fitter are compatible and return a copy of the model. """ if not model.fittable: raise ValueError("Model does not appear to be fittable.") if model.linear: warnings.warn( "Model is linear in parameters; consider using linear fitting methods.", AstropyUserWarning, ) elif len(model) != 1: # for now only single data sets ca be fitted raise ValueError("Non-linear fitters can only fit one data set at a time.") _validate_constraints(supported_constraints, model) return model.copy() if copy else model def populate_entry_points(entry_points): """ This injects entry points into the `astropy.modeling.fitting` namespace. This provides a means of inserting a fitting routine without requirement of it being merged into astropy's core. Parameters ---------- entry_points : list of `~importlib.metadata.EntryPoint` entry_points are objects which encapsulate importable objects and are defined on the installation of a package. Notes ----- An explanation of entry points can be found `here <http://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins>`_ """ for entry_point in entry_points: name = entry_point.name try: entry_point = entry_point.load() except Exception as e: # This stops the fitting from choking if an entry_point produces an error. warnings.warn( AstropyUserWarning( f"{type(e).__name__} error occurred in entry point {name}." ) ) else: if not isinstance(entry_point, type): warnings.warn( AstropyUserWarning( f"Modeling entry point {name} expected to be a Class." ) ) else: if issubclass(entry_point, Fitter): name = entry_point.__name__ globals()[name] = entry_point __all__.append(name) # noqa: PYI056 else: warnings.warn( AstropyUserWarning( f"Modeling entry point {name} expected to extend " "astropy.modeling.Fitter" ) ) populate_entry_points(entry_points().select(group="astropy.modeling"))