Source code for astropy.timeseries.periodograms.bls.core

# Licensed under a 3-clause BSD style license - see LICENSE.rst

__all__ = ["BoxLeastSquares", "BoxLeastSquaresResults"]

import numpy as np

from astropy import units
from astropy import units as u
from astropy.time import Time, TimeDelta
from astropy.timeseries.periodograms.base import BasePeriodogram
from astropy.timeseries.periodograms.lombscargle.core import has_units, strip_units

from . import methods


def validate_unit_consistency(reference_object, input_object):
    if has_units(reference_object):
        input_object = units.Quantity(input_object, unit=reference_object.unit)
    else:
        if has_units(input_object):
            input_object = units.Quantity(input_object, unit=units.one)
            input_object = input_object.value
    return input_object


[docs] class BoxLeastSquares(BasePeriodogram): """Compute the box least squares periodogram. This method is a commonly used tool for discovering transiting exoplanets or eclipsing binaries in photometric time series datasets. This implementation is based on the "box least squares (BLS)" method described in [1]_ and [2]_. Parameters ---------- t : array-like, `~astropy.units.Quantity`, `~astropy.time.Time`, or `~astropy.time.TimeDelta` Sequence of observation times. y : array-like or `~astropy.units.Quantity` Sequence of observations associated with times ``t``. dy : float, array-like, or `~astropy.units.Quantity`, optional Error or sequence of observational errors associated with times ``t``. Examples -------- Generate noisy data with a transit: >>> rand = np.random.default_rng(42) >>> t = rand.uniform(0, 10, 500) >>> y = np.ones_like(t) >>> y[np.abs((t + 1.0)%2.0-1)<0.08] = 1.0 - 0.1 >>> y += 0.01 * rand.standard_normal(len(t)) Compute the transit periodogram on a heuristically determined period grid and find the period with maximum power: >>> model = BoxLeastSquares(t, y) >>> results = model.autopower(0.16) >>> results.period[np.argmax(results.power)] # doctest: +FLOAT_CMP np.float64(2.000412388152837) Compute the periodogram on a user-specified period grid: >>> periods = np.linspace(1.9, 2.1, 5) >>> results = model.power(periods, 0.16) >>> results.power # doctest: +FLOAT_CMP array([0.01723948, 0.0643028 , 0.1338783 , 0.09428816, 0.03577543]) If the inputs are AstroPy Quantities with units, the units will be validated and the outputs will also be Quantities with appropriate units: >>> from astropy import units as u >>> t = t * u.day >>> y = y * u.dimensionless_unscaled >>> model = BoxLeastSquares(t, y) >>> results = model.autopower(0.16 * u.day) >>> results.period.unit Unit("d") >>> results.power.unit Unit(dimensionless) References ---------- .. [1] Kovacs, Zucker, & Mazeh (2002), A&A, 391, 369 (arXiv:astro-ph/0206099) .. [2] Hartman & Bakos (2016), Astronomy & Computing, 17, 1 (arXiv:1605.06811) """ def __init__(self, t, y, dy=None): # If t is a TimeDelta, convert it to a quantity. The units we convert # to don't really matter since the user gets a Quantity back at the end # so can convert to any units they like. if isinstance(t, TimeDelta): t = t.to("day") # We want to expose self.t as being the times the user passed in, but # if the times are absolute, we need to convert them to relative times # internally, so we use self._trel and self._tstart for this. self.t = t if isinstance(self.t, (Time, TimeDelta)): self._tstart = self.t[0] trel = (self.t - self._tstart).to(u.day) else: self._tstart = None trel = self.t self._trel, self.y, self.dy = self._validate_inputs(trel, y, dy)
[docs] def autoperiod( self, duration, minimum_period=None, maximum_period=None, minimum_n_transit=3, frequency_factor=1.0, ): """Determine a suitable grid of periods. This method uses a set of heuristics to select a conservative period grid that is uniform in frequency. This grid might be too fine for some user's needs depending on the precision requirements or the sampling of the data. The grid can be made coarser by increasing ``frequency_factor``. Parameters ---------- duration : float, array-like, or `~astropy.units.Quantity` ['time'] The set of durations that will be considered. minimum_period, maximum_period : float or `~astropy.units.Quantity` ['time'], optional The minimum/maximum periods to search. If not provided, these will be computed as described in the notes below. minimum_n_transit : int, optional If ``maximum_period`` is not provided, this is used to compute the maximum period to search by asserting that any systems with at least ``minimum_n_transits`` will be within the range of searched periods. Note that this is not the same as requiring that ``minimum_n_transits`` be required for detection. The default value is ``3``. frequency_factor : float, optional A factor to control the frequency spacing as described in the notes below. The default value is ``1.0``. Returns ------- period : array-like or `~astropy.units.Quantity` ['time'] The set of periods computed using these heuristics with the same units as ``t``. Notes ----- The default minimum period is chosen to be twice the maximum duration because there won't be much sensitivity to periods shorter than that. The default maximum period is computed as .. code-block:: python maximum_period = (max(t) - min(t)) / minimum_n_transits ensuring that any systems with at least ``minimum_n_transits`` are within the range of searched periods. The frequency spacing is given by .. code-block:: python df = frequency_factor * min(duration) / (max(t) - min(t))**2 so the grid can be made finer by decreasing ``frequency_factor`` or coarser by increasing ``frequency_factor``. """ duration = self._validate_duration(duration) baseline = strip_units(self._trel.max() - self._trel.min()) min_duration = strip_units(np.min(duration)) # Estimate the required frequency spacing # Because of the sparsity of a transit, this must be much finer than # the frequency resolution for a sinusoidal fit. For a sinusoidal fit, # df would be 1/baseline (see LombScargle), but here this should be # scaled proportionally to the duration in units of baseline. df = frequency_factor * min_duration / baseline**2 # If a minimum period is not provided, choose one that is twice the # maximum duration because we won't be sensitive to any periods # shorter than that. if minimum_period is None: minimum_period = 2.0 * strip_units(np.max(duration)) else: minimum_period = validate_unit_consistency(self._trel, minimum_period) minimum_period = strip_units(minimum_period) # If no maximum period is provided, choose one by requiring that # all signals with at least minimum_n_transit should be detectable. if maximum_period is None: if minimum_n_transit <= 1: raise ValueError("minimum_n_transit must be greater than 1") maximum_period = baseline / (minimum_n_transit - 1) else: maximum_period = validate_unit_consistency(self._trel, maximum_period) maximum_period = strip_units(maximum_period) if maximum_period < minimum_period: minimum_period, maximum_period = maximum_period, minimum_period if minimum_period <= 0.0: raise ValueError("minimum_period must be positive") # Convert bounds to frequency minimum_frequency = 1.0 / strip_units(maximum_period) maximum_frequency = 1.0 / strip_units(minimum_period) # Compute the number of frequencies and the frequency grid nf = 1 + int(np.round((maximum_frequency - minimum_frequency) / df)) return 1.0 / (maximum_frequency - df * np.arange(nf)) * self._t_unit()
[docs] def autopower( self, duration, objective=None, method=None, oversample=10, minimum_n_transit=3, minimum_period=None, maximum_period=None, frequency_factor=1.0, ): """Compute the periodogram at set of heuristically determined periods. This method calls :func:`BoxLeastSquares.autoperiod` to determine the period grid and then :func:`BoxLeastSquares.power` to compute the periodogram. See those methods for documentation of the arguments. """ period = self.autoperiod( duration, minimum_n_transit=minimum_n_transit, minimum_period=minimum_period, maximum_period=maximum_period, frequency_factor=frequency_factor, ) return self.power( period, duration, objective=objective, method=method, oversample=oversample )
[docs] def power(self, period, duration, objective=None, method=None, oversample=10): """Compute the periodogram for a set of periods. Parameters ---------- period : array-like or `~astropy.units.Quantity` ['time'] The periods where the power should be computed duration : float, array-like, or `~astropy.units.Quantity` ['time'] The set of durations to test objective : {'likelihood', 'snr'}, optional The scalar that should be optimized to find the best fit phase, duration, and depth. This can be either ``'likelihood'`` (default) to optimize the log-likelihood of the model, or ``'snr'`` to optimize the signal-to-noise with which the transit depth is measured. method : {'fast', 'slow'}, optional The computational method used to compute the periodogram. This is mainly included for the purposes of testing and most users will want to use the optimized ``'fast'`` method (default) that is implemented in Cython. ``'slow'`` is a brute-force method that is used to test the results of the ``'fast'`` method. oversample : int, optional The number of bins per duration that should be used. This sets the time resolution of the phase fit with larger values of ``oversample`` yielding a finer grid and higher computational cost. Returns ------- results : BoxLeastSquaresResults The periodogram results as a :class:`BoxLeastSquaresResults` object. Raises ------ ValueError If ``oversample`` is not an integer greater than 0 or if ``objective`` or ``method`` are not valid. """ period, duration = self._validate_period_and_duration(period, duration) # Check for absurdities in the ``oversample`` choice try: oversample = int(oversample) except TypeError: raise ValueError(f"oversample must be an int, got {oversample}") if oversample < 1: raise ValueError("oversample must be greater than or equal to 1") # Select the periodogram objective if objective is None: objective = "likelihood" allowed_objectives = ["snr", "likelihood"] if objective not in allowed_objectives: raise ValueError( f"Unrecognized method '{objective}'\n" f"allowed methods are: {allowed_objectives}" ) use_likelihood = objective == "likelihood" # Select the computational method if method is None: method = "fast" allowed_methods = ["fast", "slow"] if method not in allowed_methods: raise ValueError( f"Unrecognized method '{method}'\n" f"allowed methods are: {allowed_methods}" ) # Format and check the input arrays t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) t_ref = np.min(t) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = ( 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64) ** 2 ) # Make sure that the period and duration arrays are C-order period_fmt = np.ascontiguousarray(strip_units(period), dtype=np.float64) duration = np.ascontiguousarray(strip_units(duration), dtype=np.float64) # Select the correct implementation for the chosen method if method == "fast": bls = methods.bls_fast else: bls = methods.bls_slow # Run the implementation results = bls( t - t_ref, y - np.median(y), ivar, period_fmt, duration, oversample, use_likelihood, ) return self._format_results(t_ref, objective, period, results)
def _as_relative_time(self, name, times): """ Convert the provided times (if absolute) to relative times using the current _tstart value. If the times provided are relative, they are returned without conversion (though we still do some checks). """ if isinstance(times, TimeDelta): times = times.to("day") if self._tstart is None: if isinstance(times, Time): raise TypeError( f"{name} was provided as an absolute time but " "the BoxLeastSquares class was initialized " "with relative times." ) else: if isinstance(times, Time): times = (times - self._tstart).to(u.day) else: raise TypeError( f"{name} was provided as a relative time but " "the BoxLeastSquares class was initialized " "with absolute times." ) times = validate_unit_consistency(self._trel, times) return times def _as_absolute_time_if_needed(self, name, times): """ Convert the provided times to absolute times using the current _tstart value, if needed. """ if self._tstart is not None: # Some time formats/scales can't represent dates/times too far # off from the present, so we need to mask values offset by # more than 100,000 yr (the periodogram algorithm can return # transit times of e.g 1e300 for some periods). reset = np.abs(times.to_value(u.year)) > 100000 times[reset] = 0 times = self._tstart + times times[reset] = np.nan return times
[docs] def model(self, t_model, period, duration, transit_time): """Compute the transit model at the given period, duration, and phase. Parameters ---------- t_model : array-like, `~astropy.units.Quantity`, or `~astropy.time.Time` Times at which to compute the model. period : float or `~astropy.units.Quantity` ['time'] The period of the transits. duration : float or `~astropy.units.Quantity` ['time'] The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- y_model : array-like or `~astropy.units.Quantity` The model evaluated at the times ``t_model`` with units of ``y``. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time("transit_time", transit_time) t_model = strip_units(self._as_relative_time("t_model", t_model)) period = float(strip_units(period[0])) duration = float(strip_units(duration[0])) transit_time = float(strip_units(transit_time)) t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = ( 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64) ** 2 ) # Compute the depth hp = 0.5 * period m_in = np.abs((t - transit_time + hp) % period - hp) < 0.5 * duration m_out = ~m_in y_in = np.sum(y[m_in] * ivar[m_in]) / np.sum(ivar[m_in]) y_out = np.sum(y[m_out] * ivar[m_out]) / np.sum(ivar[m_out]) # Evaluate the model y_model = y_out + np.zeros_like(t_model) m_model = np.abs((t_model - transit_time + hp) % period - hp) < 0.5 * duration y_model[m_model] = y_in return y_model * self._y_unit()
[docs] def compute_stats(self, period, duration, transit_time): """Compute descriptive statistics for a given transit model. These statistics are commonly used for vetting of transit candidates. Parameters ---------- period : float or `~astropy.units.Quantity` ['time'] The period of the transits. duration : float or `~astropy.units.Quantity` ['time'] The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- stats : dict A dictionary containing several descriptive statistics: - ``depth``: The depth and uncertainty (as a tuple with two values) on the depth for the fiducial model. - ``depth_odd``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period. - ``depth_even``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period and the phase is offset by one orbital period. - ``depth_half``: The depth and uncertainty for a model with a period of half the fiducial period. - ``depth_phased``: The depth and uncertainty for a model with the fiducial period and the phase offset by half a period. - ``harmonic_amplitude``: The amplitude of the best fit sinusoidal model. - ``harmonic_delta_log_likelihood``: The difference in log likelihood between a sinusoidal model and the transit model. If ``harmonic_delta_log_likelihood`` is greater than zero, the sinusoidal model is preferred. - ``transit_times``: The mid-transit time for each transit in the baseline. - ``per_transit_count``: An array with a count of the number of data points in each unique transit included in the baseline. - ``per_transit_log_likelihood``: An array with the value of the log likelihood for each unique transit included in the baseline. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time("transit_time", transit_time) period = float(strip_units(period[0])) duration = float(strip_units(duration[0])) transit_time = float(strip_units(transit_time)) t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = ( 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64) ** 2 ) # This a helper function that will compute the depth for several # different hypothesized transit models with different parameters def _compute_depth(m, y_out=None, var_out=None): if np.any(m) and (var_out is None or np.isfinite(var_out)): var_m = 1.0 / np.sum(ivar[m]) y_m = np.sum(y[m] * ivar[m]) * var_m if y_out is None: return y_m, var_m return y_out - y_m, np.sqrt(var_m + var_out) return 0.0, np.inf # Compute the depth of the fiducial model and the two models at twice # the period hp = 0.5 * period m_in = np.abs((t - transit_time + hp) % period - hp) < 0.5 * duration m_out = ~m_in m_odd = np.abs((t - transit_time) % (2 * period) - period) < 0.5 * duration m_even = ( np.abs((t - transit_time + period) % (2 * period) - period) < 0.5 * duration ) y_out, var_out = _compute_depth(m_out) depth = _compute_depth(m_in, y_out, var_out) depth_odd = _compute_depth(m_odd, y_out, var_out) depth_even = _compute_depth(m_even, y_out, var_out) y_in = y_out - depth[0] # Compute the depth of the model at a phase of 0.5*period m_phase = np.abs((t - transit_time) % period - hp) < 0.5 * duration depth_phase = _compute_depth(m_phase, *_compute_depth((~m_phase) & m_out)) # Compute the depth of a model with a period of 0.5*period m_half = ( np.abs((t - transit_time + 0.25 * period) % (0.5 * period) - 0.25 * period) < 0.5 * duration ) depth_half = _compute_depth(m_half, *_compute_depth(~m_half)) # Compute the number of points in each transit transit_id = np.round((t[m_in] - transit_time) / period).astype(int) transit_times = ( period * np.arange(transit_id.min(), transit_id.max() + 1) + transit_time ) unique_ids, unique_counts = np.unique(transit_id, return_counts=True) unique_ids -= np.min(transit_id) transit_id -= np.min(transit_id) counts = np.zeros(np.max(transit_id) + 1, dtype=int) counts[unique_ids] = unique_counts # Compute the per-transit log likelihood ll = -0.5 * ivar[m_in] * ((y[m_in] - y_in) ** 2 - (y[m_in] - y_out) ** 2) lls = np.zeros(len(counts)) for i in unique_ids: lls[i] = np.sum(ll[transit_id == i]) full_ll = -0.5 * np.sum(ivar[m_in] * (y[m_in] - y_in) ** 2) full_ll -= 0.5 * np.sum(ivar[m_out] * (y[m_out] - y_out) ** 2) # Compute the log likelihood of a sine model A = np.vstack( ( np.sin(2 * np.pi * t / period), np.cos(2 * np.pi * t / period), np.ones_like(t), ) ).T w = np.linalg.solve(np.dot(A.T, A * ivar[:, None]), np.dot(A.T, y * ivar)) mod = np.dot(A, w) sin_ll = -0.5 * np.sum((y - mod) ** 2 * ivar) # Format the results y_unit = self._y_unit() ll_unit = 1 if self.dy is None: ll_unit = y_unit * y_unit return dict( transit_times=self._as_absolute_time_if_needed( "transit_times", transit_times * self._t_unit() ), per_transit_count=counts, per_transit_log_likelihood=lls * ll_unit, depth=(depth[0] * y_unit, depth[1] * y_unit), depth_phased=(depth_phase[0] * y_unit, depth_phase[1] * y_unit), depth_half=(depth_half[0] * y_unit, depth_half[1] * y_unit), depth_odd=(depth_odd[0] * y_unit, depth_odd[1] * y_unit), depth_even=(depth_even[0] * y_unit, depth_even[1] * y_unit), harmonic_amplitude=np.sqrt(np.sum(w[:2] ** 2)) * y_unit, harmonic_delta_log_likelihood=(sin_ll - full_ll) * ll_unit, )
[docs] def transit_mask(self, t, period, duration, transit_time): """Compute which data points are in transit for a given parameter set. Parameters ---------- t : array-like or `~astropy.units.Quantity` ['time'] Times where the mask should be evaluated. period : float or `~astropy.units.Quantity` ['time'] The period of the transits. duration : float or `~astropy.units.Quantity` ['time'] The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- transit_mask : array-like A boolean array where ``True`` indicates and in transit point and ``False`` indicates and out-of-transit point. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time("transit_time", transit_time) t = strip_units(self._as_relative_time("t", t)) period = float(strip_units(period[0])) duration = float(strip_units(duration[0])) transit_time = float(strip_units(transit_time)) hp = 0.5 * period return np.abs((t - transit_time + hp) % period - hp) < 0.5 * duration
def _validate_inputs(self, t, y, dy): """Private method used to check the consistency of the inputs. Parameters ---------- t : array-like, `~astropy.units.Quantity`, `~astropy.time.Time`, or `~astropy.time.TimeDelta` Sequence of observation times. y : array-like or `~astropy.units.Quantity` Sequence of observations associated with times t. dy : float, array-like, or `~astropy.units.Quantity` Error or sequence of observational errors associated with times t. Returns ------- t, y, dy : array-like, `~astropy.units.Quantity`, or `~astropy.time.Time` The inputs with consistent shapes and units. Raises ------ ValueError If the dimensions are incompatible or if the units of dy cannot be converted to the units of y. """ # Validate shapes of inputs if dy is None: t, y = np.broadcast_arrays(t, y, subok=True) else: t, y, dy = np.broadcast_arrays(t, y, dy, subok=True) if t.ndim != 1: raise ValueError("Inputs (t, y, dy) must be 1-dimensional") # validate units of inputs if any is a Quantity if dy is not None: dy = validate_unit_consistency(y, dy) return t, y, dy def _validate_duration(self, duration): """Private method used to check a set of test durations. Parameters ---------- duration : float, array-like, or `~astropy.units.Quantity` The set of durations that will be considered. Returns ------- duration : array-like or `~astropy.units.Quantity` The input reformatted with the correct shape and units. Raises ------ ValueError If the units of duration cannot be converted to the units of t. """ duration = np.atleast_1d(np.abs(duration)) if duration.ndim != 1 or duration.size == 0: raise ValueError("duration must be 1-dimensional") return validate_unit_consistency(self._trel, duration) def _validate_period_and_duration(self, period, duration): """Private method used to check a set of periods and durations. Parameters ---------- period : float, array-like, or `~astropy.units.Quantity` ['time'] The set of test periods. duration : float, array-like, or `~astropy.units.Quantity` ['time'] The set of durations that will be considered. Returns ------- period, duration : array-like or `~astropy.units.Quantity` ['time'] The inputs reformatted with the correct shapes and units. Raises ------ ValueError If the units of period or duration cannot be converted to the units of t. """ duration = self._validate_duration(duration) period = np.atleast_1d(np.abs(period)) if period.ndim != 1 or period.size == 0: raise ValueError("period must be 1-dimensional") period = validate_unit_consistency(self._trel, period) if not np.min(period) > np.max(duration): raise ValueError( "The maximum transit duration must be shorter than the minimum period" ) return period, duration def _format_results(self, t_ref, objective, period, results): """A private method used to wrap and add units to the periodogram. Parameters ---------- t_ref : float The minimum time in the time series (a reference time). objective : str The name of the objective used in the optimization. period : array-like or `~astropy.units.Quantity` ['time'] The set of trial periods. results : tuple The output of one of the periodogram implementations. """ ( power, depth, depth_err, duration, transit_time, depth_snr, log_likelihood, ) = results transit_time += t_ref if has_units(self._trel): transit_time = units.Quantity(transit_time, unit=self._trel.unit) transit_time = self._as_absolute_time_if_needed( "transit_time", transit_time ) duration = units.Quantity(duration, unit=self._trel.unit) if has_units(self.y): depth = units.Quantity(depth, unit=self.y.unit) depth_err = units.Quantity(depth_err, unit=self.y.unit) depth_snr = units.Quantity(depth_snr, unit=units.one) if self.dy is None: if objective == "likelihood": power = units.Quantity(power, unit=self.y.unit**2) else: power = units.Quantity(power, unit=units.one) log_likelihood = units.Quantity(log_likelihood, unit=self.y.unit**2) else: power = units.Quantity(power, unit=units.one) log_likelihood = units.Quantity(log_likelihood, unit=units.one) return BoxLeastSquaresResults( objective, period, power, depth, depth_err, duration, transit_time, depth_snr, log_likelihood, ) def _t_unit(self): if has_units(self._trel): return self._trel.unit else: return 1 def _y_unit(self): if has_units(self.y): return self.y.unit else: return 1
[docs] class BoxLeastSquaresResults(dict): """The results of a BoxLeastSquares search. Attributes ---------- objective : str The scalar used to optimize to find the best fit phase, duration, and depth. See :func:`BoxLeastSquares.power` for more information. period : array-like or `~astropy.units.Quantity` ['time'] The set of test periods. power : array-like or `~astropy.units.Quantity` The periodogram evaluated at the periods in ``period``. If ``objective`` is: * ``'likelihood'``: the values of ``power`` are the log likelihood maximized over phase, depth, and duration, or * ``'snr'``: the values of ``power`` are the signal-to-noise with which the depth is measured maximized over phase, depth, and duration. depth : array-like or `~astropy.units.Quantity` The estimated depth of the maximum power model at each period. depth_err : array-like or `~astropy.units.Quantity` The 1-sigma uncertainty on ``depth``. duration : array-like or `~astropy.units.Quantity` ['time'] The maximum power duration at each period. transit_time : array-like, `~astropy.units.Quantity`, or `~astropy.time.Time` The maximum power phase of the transit in units of time. This indicates the mid-transit time and it will always be in the range (0, period). depth_snr : array-like or `~astropy.units.Quantity` The signal-to-noise with which the depth is measured at maximum power. log_likelihood : array-like or `~astropy.units.Quantity` The log likelihood of the maximum power model. """ def __init__(self, *args): super().__init__( zip( ( "objective", "period", "power", "depth", "depth_err", "duration", "transit_time", "depth_snr", "log_likelihood", ), args, ) ) def __getattr__(self, name): try: return self[name] except KeyError: raise AttributeError(name) __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def __repr__(self): if self.keys(): m = max(map(len, list(self.keys()))) + 1 return "\n".join( [k.rjust(m) + ": " + repr(v) for k, v in sorted(self.items())] ) else: return self.__class__.__name__ + "()" def __dir__(self): return list(self.keys())