# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""An extensible ASCII table reader and writer.
core.py:
Core base classes and functions for reading and writing tables.
:Copyright: Smithsonian Astrophysical Observatory (2010)
:Author: Tom Aldcroft (aldcroft@head.cfa.harvard.edu)
"""
import copy
import csv
import fnmatch
import functools
import inspect
import itertools
import operator
import os
import re
import warnings
from contextlib import suppress
from io import StringIO
from pathlib import Path
import numpy as np
from astropy.table import Table
from astropy.utils.data import get_readable_fileobj
from astropy.utils.exceptions import AstropyWarning
from . import connect
from .docs import READ_DOCSTRING, WRITE_DOCSTRING
# Global dictionary mapping format arg to the corresponding Reader class
FORMAT_CLASSES = {}
# Similar dictionary for fast readers
FAST_CLASSES = {}
def _check_multidim_table(table, max_ndim):
"""Check that ``table`` has only columns with ndim <= ``max_ndim``.
Currently ECSV is the only built-in format that supports output of arbitrary
N-d columns, but HTML supports 2-d.
"""
# No limit?
if max_ndim is None:
return
# Check for N-d columns
nd_names = [col.info.name for col in table.itercols() if len(col.shape) > max_ndim]
if nd_names:
raise ValueError(
f"column(s) with dimension > {max_ndim} "
"cannot be be written with this format, try using 'ecsv' "
"(Enhanced CSV) format"
)
class CsvWriter:
"""
Internal class to replace the csv writer ``writerow`` and ``writerows``
functions so that in the case of ``delimiter=' '`` and
``quoting=csv.QUOTE_MINIMAL``, the output field value is quoted for empty
fields (when value == '').
This changes the API slightly in that the writerow() and writerows()
methods return the output written string instead of the length of
that string.
Examples
--------
>>> from astropy.io.ascii.core import CsvWriter
>>> writer = CsvWriter(delimiter=' ')
>>> print(writer.writerow(['hello', '', 'world']))
hello "" world
"""
# Random 16-character string that gets injected instead of any
# empty fields and is then replaced post-write with doubled-quotechar.
# Created with:
# ''.join(random.choice(string.printable[:90]) for _ in range(16))
replace_sentinel = "2b=48Av%0-V3p>bX"
def __init__(self, csvfile=None, **kwargs):
self.csvfile = csvfile
# Temporary StringIO for catching the real csv.writer() object output
self.temp_out = StringIO()
self.writer = csv.writer(self.temp_out, **kwargs)
dialect = self.writer.dialect
self.quotechar2 = dialect.quotechar * 2
self.quote_empty = (dialect.quoting == csv.QUOTE_MINIMAL) and (
dialect.delimiter == " "
)
def writerow(self, values):
"""
Similar to csv.writer.writerow but with the custom quoting behavior.
Returns the written string instead of the length of that string.
"""
has_empty = False
# If QUOTE_MINIMAL and space-delimited then replace empty fields with
# the sentinel value.
if self.quote_empty:
for i, value in enumerate(values):
if value == "":
has_empty = True
values[i] = self.replace_sentinel
return self._writerow(self.writer.writerow, values, has_empty)
def writerows(self, values_list):
"""
Similar to csv.writer.writerows but with the custom quoting behavior.
Returns the written string instead of the length of that string.
"""
has_empty = False
# If QUOTE_MINIMAL and space-delimited then replace empty fields with
# the sentinel value.
if self.quote_empty:
for values in values_list:
for i, value in enumerate(values):
if value == "":
has_empty = True
values[i] = self.replace_sentinel
return self._writerow(self.writer.writerows, values_list, has_empty)
def _writerow(self, writerow_func, values, has_empty):
"""
Call ``writerow_func`` (either writerow or writerows) with ``values``.
If it has empty fields that have been replaced then change those
sentinel strings back to quoted empty strings, e.g. ``""``.
"""
# Clear the temporary StringIO buffer that self.writer writes into and
# then call the real csv.writer().writerow or writerows with values.
self.temp_out.seek(0)
self.temp_out.truncate()
writerow_func(values)
row_string = self.temp_out.getvalue()
if self.quote_empty and has_empty:
row_string = re.sub(self.replace_sentinel, self.quotechar2, row_string)
# self.csvfile is defined then write the output. In practice the pure
# Python writer calls with csvfile=None, while the fast writer calls with
# a file-like object.
if self.csvfile:
self.csvfile.write(row_string)
return row_string
class MaskedConstant(np.ma.core.MaskedConstant):
"""A trivial extension of numpy.ma.masked.
We want to be able to put the generic term ``masked`` into a dictionary.
The constant ``numpy.ma.masked`` is not hashable (see
https://github.com/numpy/numpy/issues/4660), so we need to extend it
here with a hash value.
See https://github.com/numpy/numpy/issues/11021 for rationale for
__copy__ and __deepcopy__ methods.
"""
def __hash__(self):
"""All instances of this class shall have the same hash."""
# Any large number will do.
return 1234567890
def __copy__(self):
"""This is a singleton so just return self."""
return self
def __deepcopy__(self, memo):
return self
masked = MaskedConstant()
[docs]
class InconsistentTableError(ValueError):
"""
Indicates that an input table is inconsistent in some way.
The default behavior of ``BaseReader`` is to throw an instance of
this class if a data row doesn't match the header.
"""
class OptionalTableImportError(ImportError):
"""
Indicates that a dependency for table reading is not present.
An instance of this class is raised whenever an optional reader
with certain required dependencies cannot operate because of
an ImportError.
"""
[docs]
class ParameterError(NotImplementedError):
"""
Indicates that a reader cannot handle a passed parameter.
The C-based fast readers in ``io.ascii`` raise an instance of
this error class upon encountering a parameter that the
C engine cannot handle.
"""
class FastOptionsError(NotImplementedError):
"""
Indicates that one of the specified options for fast
reading is invalid.
"""
[docs]
class NoType:
"""
Superclass for ``StrType`` and ``NumType`` classes.
This class is the default type of ``Column`` and provides a base
class for other data types.
"""
[docs]
class StrType(NoType):
"""
Indicates that a column consists of text data.
"""
[docs]
class NumType(NoType):
"""
Indicates that a column consists of numerical data.
"""
[docs]
class FloatType(NumType):
"""
Describes floating-point data.
"""
class BoolType(NoType):
"""
Describes boolean data.
"""
[docs]
class IntType(NumType):
"""
Describes integer data.
"""
[docs]
class AllType(StrType, FloatType, IntType):
"""
Subclass of all other data types.
This type is returned by ``convert_numpy`` if the given numpy
type does not match ``StrType``, ``FloatType``, or ``IntType``.
"""
[docs]
class Column:
"""Table column.
The key attributes of a Column object are:
* **name** : column name
* **type** : column type (NoType, StrType, NumType, FloatType, IntType)
* **dtype** : numpy dtype (optional, overrides **type** if set)
* **str_vals** : list of column values as strings
* **fill_values** : dict of fill values
* **shape** : list of element shape (default [] => scalar)
* **data** : list of converted column values
* **subtype** : actual datatype for columns serialized with JSON
"""
def __init__(self, name):
self.name = name
self.type = NoType # Generic type (Int, Float, Str etc)
self.dtype = None # Numpy dtype if available
self.str_vals = []
self.fill_values = {}
self.shape = []
self.subtype = None
[docs]
class BaseSplitter:
"""
Base splitter that uses python's split method to do the work.
This does not handle quoted values. A key feature is the formulation of
__call__ as a generator that returns a list of the split line values at
each iteration.
There are two methods that are intended to be overridden, first
``process_line()`` to do pre-processing on each input line before splitting
and ``process_val()`` to do post-processing on each split string value. By
default these apply the string ``strip()`` function. These can be set to
another function via the instance attribute or be disabled entirely, for
example::
reader.header.splitter.process_val = lambda x: x.lstrip()
reader.data.splitter.process_val = None
"""
delimiter = None
""" one-character string used to separate fields """
[docs]
def process_line(self, line):
"""Remove whitespace at the beginning or end of line. This is especially useful for
whitespace-delimited files to prevent spurious columns at the beginning or end.
"""
return line.strip()
[docs]
def process_val(self, val):
"""Remove whitespace at the beginning or end of value."""
return val.strip()
[docs]
def __call__(self, lines):
if self.process_line:
lines = (self.process_line(x) for x in lines)
for line in lines:
vals = line.split(self.delimiter)
if self.process_val:
yield [self.process_val(x) for x in vals]
else:
yield vals
[docs]
def join(self, vals):
if self.delimiter is None:
delimiter = " "
else:
delimiter = self.delimiter
return delimiter.join(str(x) for x in vals)
[docs]
class DefaultSplitter(BaseSplitter):
"""Default class to split strings into columns using python csv. The class
attributes are taken from the csv Dialect class.
Typical usage::
# lines = ..
splitter = ascii.DefaultSplitter()
for col_vals in splitter(lines):
for col_val in col_vals:
...
"""
delimiter = " "
""" one-character string used to separate fields. """
quotechar = '"'
""" control how instances of *quotechar* in a field are quoted """
doublequote = True
""" character to remove special meaning from following character """
escapechar = None
""" one-character stringto quote fields containing special characters """
quoting = csv.QUOTE_MINIMAL
""" control when quotes are recognized by the reader """
skipinitialspace = True
""" ignore whitespace immediately following the delimiter """
csv_writer = None
csv_writer_out = StringIO()
[docs]
def process_line(self, line):
"""Remove whitespace at the beginning or end of line. This is especially useful for
whitespace-delimited files to prevent spurious columns at the beginning or end.
If splitting on whitespace then replace unquoted tabs with space first.
"""
if self.delimiter == r"\s":
line = _replace_tab_with_space(line, self.escapechar, self.quotechar)
return line.strip() + "\n"
[docs]
def process_val(self, val):
"""Remove whitespace at the beginning or end of value."""
return val.strip(" \t")
[docs]
def __call__(self, lines):
"""Return an iterator over the table ``lines``, where each iterator output
is a list of the split line values.
Parameters
----------
lines : list
List of table lines
Yields
------
line : list of str
Each line's split values.
"""
if self.process_line:
lines = [self.process_line(x) for x in lines]
delimiter = " " if self.delimiter == r"\s" else self.delimiter
csv_reader = csv.reader(
lines,
delimiter=delimiter,
doublequote=self.doublequote,
escapechar=self.escapechar,
quotechar=self.quotechar,
quoting=self.quoting,
skipinitialspace=self.skipinitialspace,
)
for vals in csv_reader:
if self.process_val:
yield [self.process_val(x) for x in vals]
else:
yield vals
[docs]
def join(self, vals):
delimiter = " " if self.delimiter is None else str(self.delimiter)
if self.csv_writer is None:
self.csv_writer = CsvWriter(
delimiter=delimiter,
doublequote=self.doublequote,
escapechar=self.escapechar,
quotechar=self.quotechar,
quoting=self.quoting,
)
if self.process_val:
vals = [self.process_val(x) for x in vals]
out = self.csv_writer.writerow(vals).rstrip("\r\n")
return out
def _replace_tab_with_space(line, escapechar, quotechar):
"""Replace tabs with spaces in given string, preserving quoted substrings.
Parameters
----------
line : str
String containing tabs to be replaced with spaces.
escapechar : str
Character in ``line`` used to escape special characters.
quotechar : str
Character in ``line`` indicating the start/end of a substring.
Returns
-------
line : str
A copy of ``line`` with tabs replaced by spaces, preserving quoted substrings.
"""
newline = []
in_quote = False
lastchar = "NONE"
for char in line:
if char == quotechar and lastchar != escapechar:
in_quote = not in_quote
if char == "\t" and not in_quote:
char = " "
lastchar = char
newline.append(char)
return "".join(newline)
def _get_line_index(line_or_func, lines):
"""Return the appropriate line index, depending on ``line_or_func`` which
can be either a function, a positive or negative int, or None.
"""
if callable(line_or_func):
return line_or_func(lines)
elif line_or_func:
if line_or_func >= 0:
return line_or_func
else:
n_lines = sum(1 for line in lines)
return n_lines + line_or_func
else:
return line_or_func
[docs]
class BaseData:
"""
Base table data reader.
"""
start_line = None
""" None, int, or a function of ``lines`` that returns None or int """
end_line = None
""" None, int, or a function of ``lines`` that returns None or int """
comment = None
""" Regular expression for comment lines """
splitter_class = DefaultSplitter
""" Splitter class for splitting data lines into columns """
write_spacer_lines = ["ASCII_TABLE_WRITE_SPACER_LINE"]
fill_include_names = None
fill_exclude_names = None
fill_values = [(masked, "")]
formats = {}
def __init__(self):
# Need to make sure fill_values list is instance attribute, not class attribute.
# On read, this will be overwritten by the default in the ui.read (thus, in
# the current implementation there can be no different default for different
# Readers). On write, ui.py does not specify a default, so this line here matters.
self.fill_values = copy.copy(self.fill_values)
self.formats = copy.copy(self.formats)
self.splitter = self.splitter_class()
[docs]
def process_lines(self, lines):
"""
READ: Strip out comment lines and blank lines from list of ``lines``.
Parameters
----------
lines : list
All lines in table
Returns
-------
lines : list
List of lines
"""
nonblank_lines = (x for x in lines if x.strip())
if self.comment:
re_comment = re.compile(self.comment)
return [x for x in nonblank_lines if not re_comment.match(x)]
else:
return list(nonblank_lines)
[docs]
def get_data_lines(self, lines):
"""
READ: Set ``data_lines`` attribute to lines slice comprising table data values.
"""
data_lines = self.process_lines(lines)
start_line = _get_line_index(self.start_line, data_lines)
end_line = _get_line_index(self.end_line, data_lines)
if start_line is not None or end_line is not None:
self.data_lines = data_lines[slice(start_line, end_line)]
else: # Don't copy entire data lines unless necessary
self.data_lines = data_lines
[docs]
def get_str_vals(self):
"""Return a generator that returns a list of column values (as strings)
for each data line.
"""
return self.splitter(self.data_lines)
[docs]
def masks(self, cols):
"""READ: Set fill value for each column and then apply that fill value.
In the first step it is evaluated with value from ``fill_values`` applies to
which column using ``fill_include_names`` and ``fill_exclude_names``.
In the second step all replacements are done for the appropriate columns.
"""
if self.fill_values:
self._set_fill_values(cols)
self._set_masks(cols)
def _set_fill_values(self, cols):
"""READ, WRITE: Set fill values of individual cols based on fill_values of BaseData.
fill values has the following form:
<fill_spec> = (<bad_value>, <fill_value>, <optional col_name>...)
fill_values = <fill_spec> or list of <fill_spec>'s
"""
if self.fill_values:
# when we write tables the columns may be astropy.table.Columns
# which don't carry a fill_values by default
for col in cols:
if not hasattr(col, "fill_values"):
col.fill_values = {}
# if input is only one <fill_spec>, then make it a list
with suppress(TypeError):
self.fill_values[0] + ""
self.fill_values = [self.fill_values]
# Step 1: Set the default list of columns which are affected by
# fill_values
colnames = set(self.header.colnames)
if self.fill_include_names is not None:
colnames.intersection_update(self.fill_include_names)
if self.fill_exclude_names is not None:
colnames.difference_update(self.fill_exclude_names)
# Step 2a: Find out which columns are affected by this tuple
# iterate over reversed order, so last condition is set first and
# overwritten by earlier conditions
for replacement in reversed(self.fill_values):
if len(replacement) < 2:
raise ValueError(
"Format of fill_values must be "
"(<bad>, <fill>, <optional col1>, ...)"
)
elif len(replacement) == 2:
affect_cols = colnames
else:
affect_cols = replacement[2:]
for i, key in (
(i, x)
for i, x in enumerate(self.header.colnames)
if x in affect_cols
):
cols[i].fill_values[replacement[0]] = str(replacement[1])
def _set_masks(self, cols):
"""READ: Replace string values in col.str_vals and set masks."""
if self.fill_values:
for col in (col for col in cols if col.fill_values):
col.mask = np.zeros(len(col.str_vals), dtype=bool)
for i, str_val in (
(i, x) for i, x in enumerate(col.str_vals) if x in col.fill_values
):
col.str_vals[i] = col.fill_values[str_val]
col.mask[i] = True
def _replace_vals(self, cols):
"""WRITE: replace string values in col.str_vals."""
if self.fill_values:
for col in (col for col in cols if col.fill_values):
for i, str_val in (
(i, x) for i, x in enumerate(col.str_vals) if x in col.fill_values
):
col.str_vals[i] = col.fill_values[str_val]
if masked in col.fill_values and hasattr(col, "mask"):
mask_val = col.fill_values[masked]
for i in col.mask.nonzero()[0]:
col.str_vals[i] = mask_val
[docs]
def str_vals(self):
"""WRITE: convert all values in table to a list of lists of strings.
This sets the fill values and possibly column formats from the input
formats={} keyword, then ends up calling table.pprint._pformat_col_iter()
by a circuitous path. That function does the real work of formatting.
Finally replace anything matching the fill_values.
Returns
-------
values : list of list of str
"""
self._set_fill_values(self.cols)
self._set_col_formats()
for col in self.cols:
col.str_vals = list(col.info.iter_str_vals())
self._replace_vals(self.cols)
return [col.str_vals for col in self.cols]
[docs]
def write(self, lines):
"""Write ``self.cols`` in place to ``lines``.
Parameters
----------
lines : list
List for collecting output of writing self.cols.
"""
if callable(self.start_line):
raise TypeError("Start_line attribute cannot be callable for write()")
else:
data_start_line = self.start_line or 0
while len(lines) < data_start_line:
lines.append(itertools.cycle(self.write_spacer_lines))
col_str_iters = self.str_vals()
for vals in zip(*col_str_iters):
lines.append(self.splitter.join(vals))
def _set_col_formats(self):
"""WRITE: set column formats."""
for col in self.cols:
if col.info.name in self.formats:
col.info.format = self.formats[col.info.name]
[docs]
def convert_numpy(numpy_type):
"""Return a tuple containing a function which converts a list into a numpy
array and the type produced by the converter function.
Parameters
----------
numpy_type : numpy data-type
The numpy type required of an array returned by ``converter``. Must be a
valid `numpy type <https://numpy.org/doc/stable/user/basics.types.html>`_
(e.g., numpy.uint, numpy.int8, numpy.int64, numpy.float64) or a python
type covered by a numpy type (e.g., int, float, str, bool).
Returns
-------
converter : callable
``converter`` is a function which accepts a list and converts it to a
numpy array of type ``numpy_type``.
converter_type : type
``converter_type`` tracks the generic data type produced by the
converter function.
Raises
------
ValueError
Raised by ``converter`` if the list elements could not be converted to
the required type.
"""
# Infer converter type from an instance of numpy_type.
type_name = np.array([], dtype=numpy_type).dtype.name
if "int" in type_name:
converter_type = IntType
elif "float" in type_name:
converter_type = FloatType
elif "bool" in type_name:
converter_type = BoolType
elif "str" in type_name:
converter_type = StrType
else:
converter_type = AllType
def bool_converter(vals):
"""
Convert values "False" and "True" to bools. Raise an exception
for any other string values.
"""
if len(vals) == 0:
return np.array([], dtype=bool)
# Try a smaller subset first for a long array
if len(vals) > 10000:
svals = np.asarray(vals[:1000])
if not np.all(
(svals == "False") | (svals == "True") | (svals == "0") | (svals == "1")
):
raise ValueError('bool input strings must be False, True, 0, 1, or ""')
vals = np.asarray(vals)
trues = (vals == "True") | (vals == "1")
falses = (vals == "False") | (vals == "0")
if not np.all(trues | falses):
raise ValueError('bool input strings must be only False, True, 0, 1, or ""')
return trues
def generic_converter(vals):
return np.array(vals, numpy_type)
converter = bool_converter if converter_type is BoolType else generic_converter
return converter, converter_type
[docs]
class BaseOutputter:
"""Output table as a dict of column objects keyed on column name. The
table data are stored as plain python lists within the column objects.
"""
# User-defined converters which gets set in ascii.ui if a `converter` kwarg
# is supplied.
converters = {}
# Derived classes must define default_converters and __call__
@staticmethod
def _validate_and_copy(col, converters):
"""Validate the format for the type converters and then copy those
which are valid converters for this column (i.e. converter type is
a subclass of col.type).
"""
# Allow specifying a single converter instead of a list of converters.
# The input `converters` must be a ``type`` value that can init np.dtype.
try:
# Don't allow list-like things that dtype accepts
assert type(converters) is type
converters = [np.dtype(converters)]
except (AssertionError, TypeError):
pass
converters_out = []
try:
for converter in converters:
try:
converter_func, converter_type = converter
except TypeError as err:
if str(err).startswith("cannot unpack"):
converter_func, converter_type = convert_numpy(converter)
else:
raise
if not issubclass(converter_type, NoType):
raise ValueError("converter_type must be a subclass of NoType")
if issubclass(converter_type, col.type):
converters_out.append((converter_func, converter_type))
except (ValueError, TypeError) as err:
raise ValueError(
"Error: invalid format for converters, see "
f"documentation\n{converters}: {err}"
)
return converters_out
def _convert_vals(self, cols):
for col in cols:
for key, converters in self.converters.items():
if fnmatch.fnmatch(col.name, key):
break
else:
if col.dtype is not None:
converters = [convert_numpy(col.dtype)]
else:
converters = self.default_converters
col.converters = self._validate_and_copy(col, converters)
# Catch the last error in order to provide additional information
# in case all attempts at column conversion fail. The initial
# value of of last_error will apply if no converters are defined
# and the first col.converters[0] access raises IndexError.
last_err = "no converters defined"
while not hasattr(col, "data"):
# Try converters, popping the unsuccessful ones from the list.
# If there are no converters left here then fail.
if not col.converters:
raise ValueError(f"Column {col.name} failed to convert: {last_err}")
converter_func, converter_type = col.converters[0]
if not issubclass(converter_type, col.type):
raise TypeError(
f"converter type {converter_type.__name__} does not match"
f" column type {col.type.__name__} for column {col.name}"
)
try:
col.data = converter_func(col.str_vals)
col.type = converter_type
except (OverflowError, TypeError, ValueError) as err:
# Overflow during conversion (most likely an int that
# doesn't fit in native C long). Put string at the top of
# the converters list for the next while iteration.
# With python/cpython#95778 this has been supplemented with a
# "ValueError: Exceeds the limit (4300) for integer string conversion"
# so need to catch that as well.
if isinstance(err, OverflowError) or (
isinstance(err, ValueError)
and str(err).startswith("Exceeds the limit")
):
warnings.warn(
f"OverflowError converting to {converter_type.__name__} in"
f" column {col.name}, reverting to String.",
AstropyWarning,
)
col.converters.insert(0, convert_numpy(str))
else:
col.converters.pop(0)
last_err = err
def _deduplicate_names(names):
"""Ensure there are no duplicates in ``names``.
This is done by iteratively adding ``_<N>`` to the name for increasing N
until the name is unique.
"""
new_names = []
existing_names = set()
for name in names:
base_name = name + "_"
i = 1
while name in existing_names:
# Iterate until a unique name is found
name = base_name + str(i)
i += 1
new_names.append(name)
existing_names.add(name)
return new_names
[docs]
class TableOutputter(BaseOutputter):
"""
Output the table as an astropy.table.Table object.
"""
default_converters = [
# Use `np.int64` to ensure large integers can be read as ints
# on platforms such as Windows
# https://github.com/astropy/astropy/issues/5744
convert_numpy(np.int64),
convert_numpy(float),
convert_numpy(str),
]
[docs]
def __call__(self, cols, meta):
# Sets col.data to numpy array and col.type to io.ascii Type class (e.g.
# FloatType) for each col.
self._convert_vals(cols)
t_cols = [
np.ma.MaskedArray(x.data, mask=x.mask)
if hasattr(x, "mask") and np.any(x.mask)
else x.data
for x in cols
]
out = Table(t_cols, names=[x.name for x in cols], meta=meta["table"])
for col, out_col in zip(cols, out.columns.values()):
for attr in ("format", "unit", "description"):
if hasattr(col, attr):
setattr(out_col, attr, getattr(col, attr))
if hasattr(col, "meta"):
out_col.meta.update(col.meta)
return out
class MetaBaseReader(type):
def __init__(cls, name, bases, dct):
super().__init__(name, bases, dct)
format = dct.get("_format_name")
if format is None:
return
fast = dct.get("_fast")
if fast is not None:
FAST_CLASSES[format] = cls
FORMAT_CLASSES[format] = cls
io_formats = ["ascii." + format] + dct.get("_io_registry_format_aliases", [])
if dct.get("_io_registry_suffix"):
func = functools.partial(connect.io_identify, dct["_io_registry_suffix"])
connect.io_registry.register_identifier(io_formats[0], Table, func)
for io_format in io_formats:
func = functools.partial(connect.io_read, io_format)
header = f"ASCII reader '{io_format}' details\n"
func.__doc__ = (
inspect.cleandoc(READ_DOCSTRING).strip()
+ "\n\n"
+ header
+ re.sub(".", "=", header)
+ "\n"
)
# NOTE: cls.__doc__ is None for -OO flag
func.__doc__ += inspect.cleandoc(cls.__doc__ or "").strip()
connect.io_registry.register_reader(io_format, Table, func)
if dct.get("_io_registry_can_write", True):
func = functools.partial(connect.io_write, io_format)
header = f"ASCII writer '{io_format}' details\n"
func.__doc__ = (
inspect.cleandoc(WRITE_DOCSTRING).strip()
+ "\n\n"
+ header
+ re.sub(".", "=", header)
+ "\n"
)
func.__doc__ += inspect.cleandoc(cls.__doc__ or "").strip()
connect.io_registry.register_writer(io_format, Table, func)
def _is_number(x):
with suppress(ValueError):
x = float(x)
return True
return False
def _apply_include_exclude_names(table, names, include_names, exclude_names):
"""
Apply names, include_names and exclude_names to a table or BaseHeader.
For the latter this relies on BaseHeader implementing ``colnames``,
``rename_column``, and ``remove_columns``.
Parameters
----------
table : `~astropy.table.Table`, `~astropy.io.ascii.BaseHeader`
Input table or BaseHeader subclass instance
names : list
List of names to override those in table (set to None to use existing names)
include_names : list
List of names to include in output
exclude_names : list
List of names to exclude from output (applied after ``include_names``)
"""
def rename_columns(table, names):
# Rename table column names to those passed by user
# Temporarily rename with names that are not in `names` or `table.colnames`.
# This ensures that rename succeeds regardless of existing names.
xxxs = "x" * max(len(name) for name in list(names) + list(table.colnames))
for ii, colname in enumerate(table.colnames):
table.rename_column(colname, xxxs + str(ii))
for ii, name in enumerate(names):
table.rename_column(xxxs + str(ii), name)
if names is not None:
rename_columns(table, names)
else:
colnames_uniq = _deduplicate_names(table.colnames)
if colnames_uniq != list(table.colnames):
rename_columns(table, colnames_uniq)
names_set = set(table.colnames)
if include_names is not None:
names_set.intersection_update(include_names)
if exclude_names is not None:
names_set.difference_update(exclude_names)
if names_set != set(table.colnames):
remove_names = set(table.colnames) - names_set
table.remove_columns(remove_names)
[docs]
class BaseReader(metaclass=MetaBaseReader):
"""Class providing methods to read and write an ASCII table using the specified
header, data, inputter, and outputter instances.
Typical usage is to instantiate a Reader() object and customize the
``header``, ``data``, ``inputter``, and ``outputter`` attributes. Each
of these is an object of the corresponding class.
There is one method ``inconsistent_handler`` that can be used to customize the
behavior of ``read()`` in the event that a data row doesn't match the header.
The default behavior is to raise an InconsistentTableError.
"""
names = None
include_names = None
exclude_names = None
strict_names = False
guessing = False
encoding = None
header_class = BaseHeader
data_class = BaseData
inputter_class = BaseInputter
outputter_class = TableOutputter
# Max column dimension that writer supports for this format. Exceptions
# include ECSV (no limit) and HTML (max_ndim=2).
max_ndim = 1
def __init__(self):
self.header = self.header_class()
self.data = self.data_class()
self.inputter = self.inputter_class()
self.outputter = self.outputter_class()
# Data and Header instances benefit from a little cross-coupling. Header may need to
# know about number of data columns for auto-column name generation and Data may
# need to know about header (e.g. for fixed-width tables where widths are spec'd in header.
self.data.header = self.header
self.header.data = self.data
# Metadata, consisting of table-level meta and column-level meta. The latter
# could include information about column type, description, formatting, etc,
# depending on the table meta format.
self.meta = {"table": {}, "cols": {}}
def _check_multidim_table(self, table):
"""Check that the dimensions of columns in ``table`` are acceptable.
The reader class attribute ``max_ndim`` defines the maximum dimension of
columns that can be written using this format. The base value is ``1``,
corresponding to normal scalar columns with just a length.
Parameters
----------
table : `~astropy.table.Table`
Input table.
Raises
------
ValueError
If any column exceeds the number of allowed dimensions
"""
_check_multidim_table(table, self.max_ndim)
[docs]
def read(self, table):
"""Read the ``table`` and return the results in a format determined by
the ``outputter`` attribute.
The ``table`` parameter is any string or object that can be processed
by the instance ``inputter``. For the base Inputter class ``table`` can be
one of:
* File name
* File-like object
* String (newline separated) with all header and data lines (must have at least 2 lines)
* List of strings
Parameters
----------
table : str, file-like, list
Input table.
Returns
-------
table : `~astropy.table.Table`
Output table
"""
# If ``table`` is a file then store the name in the ``data``
# attribute. The ``table`` is a "file" if it is a string
# without the new line specific to the OS.
with suppress(TypeError):
# Strings only
if os.linesep not in table + "":
self.data.table_name = Path(table).name
# If one of the newline chars is set as field delimiter, only
# accept the other one as line splitter
if self.header.splitter.delimiter == "\n":
newline = "\r"
elif self.header.splitter.delimiter == "\r":
newline = "\n"
else:
newline = None
# Get a list of the lines (rows) in the table
self.lines = self.inputter.get_lines(table, newline=newline)
# Set self.data.data_lines to a slice of lines contain the data rows
self.data.get_data_lines(self.lines)
# Extract table meta values (e.g. keywords, comments, etc). Updates self.meta.
self.header.update_meta(self.lines, self.meta)
# Get the table column definitions
self.header.get_cols(self.lines)
# Make sure columns are valid
self.header.check_column_names(self.names, self.strict_names, self.guessing)
self.cols = cols = self.header.cols
self.data.splitter.cols = cols
n_cols = len(cols)
for i, str_vals in enumerate(self.data.get_str_vals()):
if len(str_vals) != n_cols:
str_vals = self.inconsistent_handler(str_vals, n_cols)
# if str_vals is None, we skip this row
if str_vals is None:
continue
# otherwise, we raise an error only if it is still inconsistent
if len(str_vals) != n_cols:
errmsg = (
f"Number of header columns ({n_cols}) inconsistent with "
f"data columns ({len(str_vals)}) at data line {i}\n"
f"Header values: {[x.name for x in cols]}\n"
f"Data values: {str_vals}"
)
raise InconsistentTableError(errmsg)
for j, col in enumerate(cols):
col.str_vals.append(str_vals[j])
if hasattr(self.header, "table_meta"):
self.meta["table"].update(self.header.table_meta)
_apply_include_exclude_names(
self.header, self.names, self.include_names, self.exclude_names
)
self.data.masks(cols)
table = self.outputter(self.header.cols, self.meta)
self.cols = self.header.cols
return table
[docs]
def inconsistent_handler(self, str_vals, ncols):
"""
Adjust or skip data entries if a row is inconsistent with the header.
The default implementation does no adjustment, and hence will always trigger
an exception in read() any time the number of data entries does not match
the header.
Note that this will *not* be called if the row already matches the header.
Parameters
----------
str_vals : list
A list of value strings from the current row of the table.
ncols : int
The expected number of entries from the table header.
Returns
-------
str_vals : list
List of strings to be parsed into data entries in the output table. If
the length of this list does not match ``ncols``, an exception will be
raised in read(). Can also be None, in which case the row will be
skipped.
"""
# an empty list will always trigger an InconsistentTableError in read()
return str_vals
@property
def comment_lines(self):
"""Return lines in the table that match header.comment regexp."""
if not hasattr(self, "lines"):
raise ValueError(
"Table must be read prior to accessing the header comment lines"
)
if self.header.comment:
re_comment = re.compile(self.header.comment)
comment_lines = [x for x in self.lines if re_comment.match(x)]
else:
comment_lines = []
return comment_lines
[docs]
def update_table_data(self, table):
"""
Update table columns in place if needed.
This is a hook to allow updating the table columns after name
filtering but before setting up to write the data. This is currently
only used by ECSV and is otherwise just a pass-through.
Parameters
----------
table : `astropy.table.Table`
Input table for writing
Returns
-------
table : `astropy.table.Table`
Output table for writing
"""
return table
[docs]
def write(self, table):
"""
Write ``table`` as list of strings.
Parameters
----------
table : `~astropy.table.Table`
Input table data.
Returns
-------
lines : list
List of strings corresponding to ASCII table
"""
# Check column names before altering
self.header.cols = list(table.columns.values())
self.header.check_column_names(self.names, self.strict_names, False)
# In-place update of columns in input ``table`` to reflect column
# filtering. Note that ``table`` is guaranteed to be a copy of the
# original user-supplied table.
_apply_include_exclude_names(
table, self.names, self.include_names, self.exclude_names
)
# This is a hook to allow updating the table columns after name
# filtering but before setting up to write the data. This is currently
# only used by ECSV and is otherwise just a pass-through.
table = self.update_table_data(table)
# Check that table column dimensions are supported by this format class.
# Most formats support only 1-d columns, but some like ECSV support N-d.
self._check_multidim_table(table)
# Now use altered columns
new_cols = list(table.columns.values())
# link information about the columns to the writer object (i.e. self)
self.header.cols = new_cols
self.data.cols = new_cols
self.header.table_meta = table.meta
# Write header and data to lines list
lines = []
self.write_header(lines, table.meta)
self.data.write(lines)
return lines
[docs]
class WhitespaceSplitter(DefaultSplitter):
[docs]
def process_line(self, line):
"""Replace tab with space within ``line`` while respecting quoted substrings."""
newline = []
in_quote = False
lastchar = None
for char in line:
if char == self.quotechar and (
self.escapechar is None or lastchar != self.escapechar
):
in_quote = not in_quote
if char == "\t" and not in_quote:
char = " "
lastchar = char
newline.append(char)
return "".join(newline)
extra_reader_pars = (
"delimiter",
"comment",
"quotechar",
"header_start",
"data_start",
"data_end",
"converters",
"encoding",
"data_splitter_cls",
"header_splitter_cls",
"names",
"include_names",
"exclude_names",
"strict_names",
"fill_values",
"fill_include_names",
"fill_exclude_names",
)
def _get_reader(reader_cls, inputter_cls=None, outputter_cls=None, **kwargs):
"""Initialize a table reader allowing for common customizations. See ui.get_reader()
for param docs. This routine is for internal (package) use only and is useful
because it depends only on the "core" module.
"""
from .fastbasic import FastBasic
if issubclass(reader_cls, FastBasic): # Fast readers handle args separately
if inputter_cls is not None:
kwargs["inputter_cls"] = inputter_cls
return reader_cls(**kwargs)
# If user explicitly passed a fast reader with enable='force'
# (e.g. by passing non-default options), raise an error for slow readers
if "fast_reader" in kwargs:
if kwargs["fast_reader"]["enable"] == "force":
raise ParameterError(
"fast_reader required with "
"{}, but this is not a fast C reader: {}".format(
kwargs["fast_reader"], reader_cls
)
)
else:
del kwargs["fast_reader"] # Otherwise ignore fast_reader parameter
reader_kwargs = {k: v for k, v in kwargs.items() if k not in extra_reader_pars}
reader = reader_cls(**reader_kwargs)
if inputter_cls is not None:
reader.inputter = inputter_cls()
if outputter_cls is not None:
reader.outputter = outputter_cls()
# Issue #855 suggested to set data_start to header_start + default_header_length
# Thus, we need to retrieve this from the class definition before resetting these numbers.
try:
default_header_length = reader.data.start_line - reader.header.start_line
except TypeError: # Start line could be None or an instancemethod
default_header_length = None
# csv.reader is hard-coded to recognise either '\r' or '\n' as end-of-line,
# therefore DefaultSplitter cannot handle these as delimiters.
if "delimiter" in kwargs:
if kwargs["delimiter"] in ("\n", "\r", "\r\n"):
reader.header.splitter = BaseSplitter()
reader.data.splitter = BaseSplitter()
reader.header.splitter.delimiter = kwargs["delimiter"]
reader.data.splitter.delimiter = kwargs["delimiter"]
if "comment" in kwargs:
reader.header.comment = kwargs["comment"]
reader.data.comment = kwargs["comment"]
if "quotechar" in kwargs:
reader.header.splitter.quotechar = kwargs["quotechar"]
reader.data.splitter.quotechar = kwargs["quotechar"]
if "data_start" in kwargs:
reader.data.start_line = kwargs["data_start"]
if "data_end" in kwargs:
reader.data.end_line = kwargs["data_end"]
if "header_start" in kwargs:
if reader.header.start_line is not None:
reader.header.start_line = kwargs["header_start"]
# For FixedWidthTwoLine the data_start is calculated relative to the position line.
# However, position_line is given as absolute number and not relative to header_start.
# So, ignore this Reader here.
if (
("data_start" not in kwargs)
and (default_header_length is not None)
and reader._format_name
not in ["fixed_width_two_line", "commented_header"]
):
reader.data.start_line = (
reader.header.start_line + default_header_length
)
elif kwargs["header_start"] is not None:
# User trying to set a None header start to some value other than None
raise ValueError("header_start cannot be modified for this Reader")
if "converters" in kwargs:
reader.outputter.converters = kwargs["converters"]
if "data_splitter_cls" in kwargs:
reader.data.splitter = kwargs["data_splitter_cls"]()
if "header_splitter_cls" in kwargs:
reader.header.splitter = kwargs["header_splitter_cls"]()
if "names" in kwargs:
reader.names = kwargs["names"]
if None in reader.names:
raise TypeError("Cannot have None for column name")
if len(set(reader.names)) != len(reader.names):
raise ValueError("Duplicate column names")
if "include_names" in kwargs:
reader.include_names = kwargs["include_names"]
if "exclude_names" in kwargs:
reader.exclude_names = kwargs["exclude_names"]
# Strict names is normally set only within the guessing process to
# indicate that column names cannot be numeric or have certain
# characters at the beginning or end. It gets used in
# BaseHeader.check_column_names().
if "strict_names" in kwargs:
reader.strict_names = kwargs["strict_names"]
if "fill_values" in kwargs:
reader.data.fill_values = kwargs["fill_values"]
if "fill_include_names" in kwargs:
reader.data.fill_include_names = kwargs["fill_include_names"]
if "fill_exclude_names" in kwargs:
reader.data.fill_exclude_names = kwargs["fill_exclude_names"]
if "encoding" in kwargs:
reader.encoding = kwargs["encoding"]
reader.inputter.encoding = kwargs["encoding"]
return reader
extra_writer_pars = (
"delimiter",
"comment",
"quotechar",
"formats",
"strip_whitespace",
"names",
"include_names",
"exclude_names",
"fill_values",
"fill_include_names",
"fill_exclude_names",
)
def _get_writer(writer_cls, fast_writer, **kwargs):
"""Initialize a table writer allowing for common customizations. This
routine is for internal (package) use only and is useful because it depends
only on the "core" module.
"""
from .fastbasic import FastBasic
# A value of None for fill_values imply getting the default string
# representation of masked values (depending on the writer class), but the
# machinery expects a list. The easiest here is to just pop the value off,
# i.e. fill_values=None is the same as not providing it at all.
if "fill_values" in kwargs and kwargs["fill_values"] is None:
del kwargs["fill_values"]
if issubclass(writer_cls, FastBasic): # Fast writers handle args separately
return writer_cls(**kwargs)
elif fast_writer and f"fast_{writer_cls._format_name}" in FAST_CLASSES:
# Switch to fast writer
kwargs["fast_writer"] = fast_writer
return FAST_CLASSES[f"fast_{writer_cls._format_name}"](**kwargs)
writer_kwargs = {k: v for k, v in kwargs.items() if k not in extra_writer_pars}
writer = writer_cls(**writer_kwargs)
if "delimiter" in kwargs:
writer.header.splitter.delimiter = kwargs["delimiter"]
writer.data.splitter.delimiter = kwargs["delimiter"]
if "comment" in kwargs:
writer.header.write_comment = kwargs["comment"]
writer.data.write_comment = kwargs["comment"]
if "quotechar" in kwargs:
writer.header.splitter.quotechar = kwargs["quotechar"]
writer.data.splitter.quotechar = kwargs["quotechar"]
if "formats" in kwargs:
writer.data.formats = kwargs["formats"]
if "strip_whitespace" in kwargs:
if kwargs["strip_whitespace"]:
# Restore the default SplitterClass process_val method which strips
# whitespace. This may have been changed in the Writer
# initialization (e.g. Rdb and Tab)
writer.data.splitter.process_val = operator.methodcaller("strip", " \t")
else:
writer.data.splitter.process_val = None
if "names" in kwargs:
writer.header.names = kwargs["names"]
if "include_names" in kwargs:
writer.include_names = kwargs["include_names"]
if "exclude_names" in kwargs:
writer.exclude_names = kwargs["exclude_names"]
if "fill_values" in kwargs:
# Prepend user-specified values to the class default.
with suppress(TypeError, IndexError):
# Test if it looks like (match, replace_string, optional_colname),
# in which case make it a list
kwargs["fill_values"][1] + ""
kwargs["fill_values"] = [kwargs["fill_values"]]
writer.data.fill_values = kwargs["fill_values"] + writer.data.fill_values
if "fill_include_names" in kwargs:
writer.data.fill_include_names = kwargs["fill_include_names"]
if "fill_exclude_names" in kwargs:
writer.data.fill_exclude_names = kwargs["fill_exclude_names"]
return writer