Data Visualization (astropy.visualization)

Introduction

astropy.visualization provides functionality that can be helpful when visualizing data. This includes a framework for plotting Astronomical images with coordinates with Matplotlib (previously the standalone wcsaxes package), functionality related to image normalization (including both scaling and stretching), smart histogram plotting, RGB color image creation from separate images, and custom plotting styles for Matplotlib.

Scripts

This module includes a command-line script, fits2bitmap to convert FITS images to bitmaps, including scaling and stretching of the image. To find out more about the available options and how to use it, type:

$ fits2bitmap --help

Reference/API

astropy.visualization Package

Functions

hist(x[, bins, ax, max_bins])

Enhanced histogram function

imshow_norm(data[, ax, imshow_only_kwargs])

A convenience function to call matplotlib’s matplotlib.pyplot.imshow function, using an ImageNormalize object as the normalization.

make_lupton_rgb(image_r, image_g, image_b[, …])

Return a Red/Green/Blue color image from up to 3 images using an asinh stretch.

quantity_support([format])

Enable support for plotting astropy.units.Quantity instances in matplotlib.

simple_norm(data[, stretch, power, asinh_a, …])

Return a Normalization class that can be used for displaying images with Matplotlib.

Classes

AsinhStretch([a])

An asinh stretch.

AsymmetricPercentileInterval(…[, n_samples])

Interval based on a keeping a specified fraction of pixels (can be asymmetric).

BaseInterval

Base class for the interval classes, which, when called with an array of values, return an interval computed following different algorithms.

BaseStretch

Base class for the stretch classes, which, when called with an array of values in the range [0:1], return an transformed array of values, also in the range [0:1].

BaseTransform

A transformation object.

CompositeStretch(transform_1, transform_2)

A combination of two stretches.

CompositeTransform(transform_1, transform_2)

A combination of two transforms.

ContrastBiasStretch(contrast, bias)

A stretch that takes into account contrast and bias.

HistEqStretch(data[, values])

A histogram equalization stretch.

ImageNormalize([data, interval, vmin, vmax, …])

Normalization class to be used with Matplotlib.

LinearStretch([slope, intercept])

A linear stretch with a slope and offset.

LogStretch([a])

A log stretch.

ManualInterval([vmin, vmax])

Interval based on user-specified values.

MinMaxInterval

Interval based on the minimum and maximum values in the data.

PercentileInterval(percentile[, n_samples])

Interval based on a keeping a specified fraction of pixels.

PowerDistStretch([a])

An alternative power stretch.

PowerStretch(a)

A power stretch.

SinhStretch([a])

A sinh stretch.

SqrtStretch

A square root stretch.

SquaredStretch()

A convenience class for a power stretch of 2.

ZScaleInterval([nsamples, contrast, …])

Interval based on IRAF’s zscale.

Class Inheritance Diagram

Inheritance diagram of astropy.visualization.stretch.AsinhStretch, astropy.visualization.interval.AsymmetricPercentileInterval, astropy.visualization.interval.BaseInterval, astropy.visualization.stretch.BaseStretch, astropy.visualization.transform.BaseTransform, astropy.visualization.stretch.CompositeStretch, astropy.visualization.transform.CompositeTransform, astropy.visualization.stretch.ContrastBiasStretch, astropy.visualization.stretch.HistEqStretch, astropy.visualization.mpl_normalize.ImageNormalize, astropy.visualization.stretch.LinearStretch, astropy.visualization.stretch.LogStretch, astropy.visualization.interval.ManualInterval, astropy.visualization.interval.MinMaxInterval, astropy.visualization.interval.PercentileInterval, astropy.visualization.stretch.PowerDistStretch, astropy.visualization.stretch.PowerStretch, astropy.visualization.stretch.SinhStretch, astropy.visualization.stretch.SqrtStretch, astropy.visualization.stretch.SquaredStretch, astropy.visualization.interval.ZScaleInterval

astropy.visualization.mpl_normalize Module

Normalization class for Matplotlib that can be used to produce colorbars.

Functions

simple_norm(data[, stretch, power, asinh_a, …])

Return a Normalization class that can be used for displaying images with Matplotlib.

imshow_norm(data[, ax, imshow_only_kwargs])

A convenience function to call matplotlib’s matplotlib.pyplot.imshow function, using an ImageNormalize object as the normalization.

Classes

ImageNormalize([data, interval, vmin, vmax, …])

Normalization class to be used with Matplotlib.

Class Inheritance Diagram

Inheritance diagram of astropy.visualization.mpl_normalize.ImageNormalize