# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""A set of standard astronomical equivalencies."""
from collections import UserList
# THIRD-PARTY
import numpy as np
# LOCAL
from astropy.constants import si as _si
from astropy.utils.misc import isiterable
from . import astrophys, cgs, dimensionless_unscaled, misc, si
from .core import Unit, UnitsError
from .function import units as function_units
__all__ = [
"parallax",
"spectral",
"spectral_density",
"doppler_radio",
"doppler_optical",
"doppler_relativistic",
"doppler_redshift",
"mass_energy",
"brightness_temperature",
"thermodynamic_temperature",
"beam_angular_area",
"dimensionless_angles",
"logarithmic",
"temperature",
"temperature_energy",
"molar_mass_amu",
"pixel_scale",
"plate_scale",
"Equivalency",
]
[docs]
class Equivalency(UserList):
"""
A container for a units equivalency.
Attributes
----------
name: `str`
The name of the equivalency.
kwargs: `dict`
Any positional or keyword arguments used to make the equivalency.
"""
def __init__(self, equiv_list, name="", kwargs=None):
self.data = equiv_list
self.name = [name]
self.kwargs = [kwargs] if kwargs is not None else [{}]
def __add__(self, other):
if isinstance(other, Equivalency):
new = super().__add__(other)
new.name = self.name[:] + other.name
new.kwargs = self.kwargs[:] + other.kwargs
return new
else:
return self.data.__add__(other)
def __eq__(self, other):
return (
isinstance(other, self.__class__)
and self.name == other.name
and self.kwargs == other.kwargs
)
[docs]
def dimensionless_angles():
"""Allow angles to be equivalent to dimensionless (with 1 rad = 1 m/m = 1).
It is special compared to other equivalency pairs in that it
allows this independent of the power to which the angle is raised,
and independent of whether it is part of a more complicated unit.
"""
return Equivalency([(si.radian, None)], "dimensionless_angles")
[docs]
def logarithmic():
"""Allow logarithmic units to be converted to dimensionless fractions."""
return Equivalency(
[(dimensionless_unscaled, function_units.dex, np.log10, lambda x: 10.0**x)],
"logarithmic",
)
[docs]
def parallax():
"""
Returns a list of equivalence pairs that handle the conversion
between parallax angle and distance.
"""
def parallax_converter(x):
x = np.asanyarray(x)
d = 1 / x
if isiterable(d):
d[d < 0] = np.nan
return d
else:
if d < 0:
return np.array(np.nan)
else:
return d
return Equivalency(
[(si.arcsecond, astrophys.parsec, parallax_converter)], "parallax"
)
[docs]
def spectral():
"""
Returns a list of equivalence pairs that handle spectral
wavelength, wave number, frequency, and energy equivalencies.
Allows conversions between wavelength units, wave number units,
frequency units, and energy units as they relate to light.
There are two types of wave number:
* spectroscopic - :math:`1 / \\lambda` (per meter)
* angular - :math:`2 \\pi / \\lambda` (radian per meter)
"""
c = _si.c.value
h = _si.h.value
hc = h * c
two_pi = 2.0 * np.pi
inv_m_spec = si.m**-1
inv_m_ang = si.radian / si.m
return Equivalency(
[
(si.m, si.Hz, lambda x: c / x),
(si.m, si.J, lambda x: hc / x),
(si.Hz, si.J, lambda x: h * x, lambda x: x / h),
(si.m, inv_m_spec, lambda x: 1.0 / x),
(si.Hz, inv_m_spec, lambda x: x / c, lambda x: c * x),
(si.J, inv_m_spec, lambda x: x / hc, lambda x: hc * x),
(inv_m_spec, inv_m_ang, lambda x: x * two_pi, lambda x: x / two_pi),
(si.m, inv_m_ang, lambda x: two_pi / x),
(si.Hz, inv_m_ang, lambda x: two_pi * x / c, lambda x: c * x / two_pi),
(si.J, inv_m_ang, lambda x: x * two_pi / hc, lambda x: hc * x / two_pi),
],
"spectral",
)
[docs]
def spectral_density(wav, factor=None):
"""
Returns a list of equivalence pairs that handle spectral density
with regard to wavelength and frequency.
Parameters
----------
wav : `~astropy.units.Quantity`
`~astropy.units.Quantity` associated with values being converted
(e.g., wavelength or frequency).
Notes
-----
The ``factor`` argument is left for backward-compatibility with the syntax
``spectral_density(unit, factor)`` but users are encouraged to use
``spectral_density(factor * unit)`` instead.
"""
from .core import UnitBase
if isinstance(wav, UnitBase):
if factor is None:
raise ValueError("If `wav` is specified as a unit, `factor` should be set")
wav = factor * wav # Convert to Quantity
c_Aps = _si.c.to_value(si.AA / si.s) # Angstrom/s
h_cgs = _si.h.cgs.value # erg * s
hc = c_Aps * h_cgs
# flux density
f_la = cgs.erg / si.angstrom / si.cm**2 / si.s
f_nu = cgs.erg / si.Hz / si.cm**2 / si.s
nu_f_nu = cgs.erg / si.cm**2 / si.s
la_f_la = nu_f_nu
phot_f_la = astrophys.photon / (si.cm**2 * si.s * si.AA)
phot_f_nu = astrophys.photon / (si.cm**2 * si.s * si.Hz)
la_phot_f_la = astrophys.photon / (si.cm**2 * si.s)
# luminosity density
L_nu = cgs.erg / si.s / si.Hz
L_la = cgs.erg / si.s / si.angstrom
nu_L_nu = cgs.erg / si.s
la_L_la = nu_L_nu
phot_L_la = astrophys.photon / (si.s * si.AA)
phot_L_nu = astrophys.photon / (si.s * si.Hz)
# surface brightness (flux equiv)
S_la = cgs.erg / si.angstrom / si.cm**2 / si.s / si.sr
S_nu = cgs.erg / si.Hz / si.cm**2 / si.s / si.sr
nu_S_nu = cgs.erg / si.cm**2 / si.s / si.sr
la_S_la = nu_S_nu
phot_S_la = astrophys.photon / (si.cm**2 * si.s * si.AA * si.sr)
phot_S_nu = astrophys.photon / (si.cm**2 * si.s * si.Hz * si.sr)
# surface brightness (luminosity equiv)
SL_nu = cgs.erg / si.s / si.Hz / si.sr
SL_la = cgs.erg / si.s / si.angstrom / si.sr
nu_SL_nu = cgs.erg / si.s / si.sr
la_SL_la = nu_SL_nu
phot_SL_la = astrophys.photon / (si.s * si.AA * si.sr)
phot_SL_nu = astrophys.photon / (si.s * si.Hz * si.sr)
def f_la_to_f_nu(x):
return x * (wav.to_value(si.AA, spectral()) ** 2 / c_Aps)
def f_la_from_f_nu(x):
return x / (wav.to_value(si.AA, spectral()) ** 2 / c_Aps)
def f_nu_to_nu_f_nu(x):
return x * wav.to_value(si.Hz, spectral())
def f_nu_from_nu_f_nu(x):
return x / wav.to_value(si.Hz, spectral())
def f_la_to_la_f_la(x):
return x * wav.to_value(si.AA, spectral())
def f_la_from_la_f_la(x):
return x / wav.to_value(si.AA, spectral())
def phot_f_la_to_f_la(x):
return hc * x / wav.to_value(si.AA, spectral())
def phot_f_la_from_f_la(x):
return x * wav.to_value(si.AA, spectral()) / hc
def phot_f_la_to_f_nu(x):
return h_cgs * x * wav.to_value(si.AA, spectral())
def phot_f_la_from_f_nu(x):
return x / (wav.to_value(si.AA, spectral()) * h_cgs)
def phot_f_la_to_phot_f_nu(x):
return x * wav.to_value(si.AA, spectral()) ** 2 / c_Aps
def phot_f_la_from_phot_f_nu(x):
return c_Aps * x / wav.to_value(si.AA, spectral()) ** 2
phot_f_nu_to_f_nu = phot_f_la_to_f_la
phot_f_nu_from_f_nu = phot_f_la_from_f_la
def phot_f_nu_to_f_la(x):
return x * hc * c_Aps / wav.to_value(si.AA, spectral()) ** 3
def phot_f_nu_from_f_la(x):
return x * wav.to_value(si.AA, spectral()) ** 3 / (hc * c_Aps)
# for luminosity density
L_nu_to_nu_L_nu = f_nu_to_nu_f_nu
L_nu_from_nu_L_nu = f_nu_from_nu_f_nu
L_la_to_la_L_la = f_la_to_la_f_la
L_la_from_la_L_la = f_la_from_la_f_la
phot_L_la_to_L_la = phot_f_la_to_f_la
phot_L_la_from_L_la = phot_f_la_from_f_la
phot_L_la_to_L_nu = phot_f_la_to_f_nu
phot_L_la_from_L_nu = phot_f_la_from_f_nu
phot_L_la_to_phot_L_nu = phot_f_la_to_phot_f_nu
phot_L_la_from_phot_L_nu = phot_f_la_from_phot_f_nu
phot_L_nu_to_L_nu = phot_f_nu_to_f_nu
phot_L_nu_from_L_nu = phot_f_nu_from_f_nu
phot_L_nu_to_L_la = phot_f_nu_to_f_la
phot_L_nu_from_L_la = phot_f_nu_from_f_la
return Equivalency(
[
# flux
(f_la, f_nu, f_la_to_f_nu, f_la_from_f_nu),
(f_nu, nu_f_nu, f_nu_to_nu_f_nu, f_nu_from_nu_f_nu),
(f_la, la_f_la, f_la_to_la_f_la, f_la_from_la_f_la),
(phot_f_la, f_la, phot_f_la_to_f_la, phot_f_la_from_f_la),
(phot_f_la, f_nu, phot_f_la_to_f_nu, phot_f_la_from_f_nu),
(phot_f_la, phot_f_nu, phot_f_la_to_phot_f_nu, phot_f_la_from_phot_f_nu),
(phot_f_nu, f_nu, phot_f_nu_to_f_nu, phot_f_nu_from_f_nu),
(phot_f_nu, f_la, phot_f_nu_to_f_la, phot_f_nu_from_f_la),
# integrated flux
(la_phot_f_la, la_f_la, phot_f_la_to_f_la, phot_f_la_from_f_la),
# luminosity
(L_la, L_nu, f_la_to_f_nu, f_la_from_f_nu),
(L_nu, nu_L_nu, L_nu_to_nu_L_nu, L_nu_from_nu_L_nu),
(L_la, la_L_la, L_la_to_la_L_la, L_la_from_la_L_la),
(phot_L_la, L_la, phot_L_la_to_L_la, phot_L_la_from_L_la),
(phot_L_la, L_nu, phot_L_la_to_L_nu, phot_L_la_from_L_nu),
(phot_L_la, phot_L_nu, phot_L_la_to_phot_L_nu, phot_L_la_from_phot_L_nu),
(phot_L_nu, L_nu, phot_L_nu_to_L_nu, phot_L_nu_from_L_nu),
(phot_L_nu, L_la, phot_L_nu_to_L_la, phot_L_nu_from_L_la),
# surface brightness (flux equiv)
(S_la, S_nu, f_la_to_f_nu, f_la_from_f_nu),
(S_nu, nu_S_nu, f_nu_to_nu_f_nu, f_nu_from_nu_f_nu),
(S_la, la_S_la, f_la_to_la_f_la, f_la_from_la_f_la),
(phot_S_la, S_la, phot_f_la_to_f_la, phot_f_la_from_f_la),
(phot_S_la, S_nu, phot_f_la_to_f_nu, phot_f_la_from_f_nu),
(phot_S_la, phot_S_nu, phot_f_la_to_phot_f_nu, phot_f_la_from_phot_f_nu),
(phot_S_nu, S_nu, phot_f_nu_to_f_nu, phot_f_nu_from_f_nu),
(phot_S_nu, S_la, phot_f_nu_to_f_la, phot_f_nu_from_f_la),
# surface brightness (luminosity equiv)
(SL_la, SL_nu, f_la_to_f_nu, f_la_from_f_nu),
(SL_nu, nu_SL_nu, L_nu_to_nu_L_nu, L_nu_from_nu_L_nu),
(SL_la, la_SL_la, L_la_to_la_L_la, L_la_from_la_L_la),
(phot_SL_la, SL_la, phot_L_la_to_L_la, phot_L_la_from_L_la),
(phot_SL_la, SL_nu, phot_L_la_to_L_nu, phot_L_la_from_L_nu),
(phot_SL_la, phot_SL_nu, phot_L_la_to_phot_L_nu, phot_L_la_from_phot_L_nu),
(phot_SL_nu, SL_nu, phot_L_nu_to_L_nu, phot_L_nu_from_L_nu),
(phot_SL_nu, SL_la, phot_L_nu_to_L_la, phot_L_nu_from_L_la),
],
"spectral_density",
{"wav": wav, "factor": factor},
)
[docs]
def doppler_radio(rest):
r"""
Return the equivalency pairs for the radio convention for velocity.
The radio convention for the relation between velocity and frequency is:
:math:`V = c \frac{f_0 - f}{f_0} ; f(V) = f_0 ( 1 - V/c )`
Parameters
----------
rest : `~astropy.units.Quantity`
Any quantity supported by the standard spectral equivalencies
(wavelength, energy, frequency, wave number).
References
----------
`NRAO site defining the conventions <https://www.gb.nrao.edu/~fghigo/gbtdoc/doppler.html>`_
Examples
--------
>>> import astropy.units as u
>>> CO_restfreq = 115.27120*u.GHz # rest frequency of 12 CO 1-0 in GHz
>>> radio_CO_equiv = u.doppler_radio(CO_restfreq)
>>> measured_freq = 115.2832*u.GHz
>>> radio_velocity = measured_freq.to(u.km/u.s, equivalencies=radio_CO_equiv)
>>> radio_velocity # doctest: +FLOAT_CMP
<Quantity -31.209092088877583 km / s>
"""
assert_is_spectral_unit(rest)
ckms = _si.c.to_value("km/s")
def to_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
return (restfreq - x) / (restfreq) * ckms
def from_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
voverc = x / ckms
return restfreq * (1 - voverc)
def to_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
return (x - restwav) / (x) * ckms
def from_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
return restwav * ckms / (ckms - x)
def to_vel_en(x):
resten = rest.to_value(si.eV, equivalencies=spectral())
return (resten - x) / (resten) * ckms
def from_vel_en(x):
resten = rest.to_value(si.eV, equivalencies=spectral())
voverc = x / ckms
return resten * (1 - voverc)
return Equivalency(
[
(si.Hz, si.km / si.s, to_vel_freq, from_vel_freq),
(si.AA, si.km / si.s, to_vel_wav, from_vel_wav),
(si.eV, si.km / si.s, to_vel_en, from_vel_en),
],
"doppler_radio",
{"rest": rest},
)
[docs]
def doppler_optical(rest):
r"""
Return the equivalency pairs for the optical convention for velocity.
The optical convention for the relation between velocity and frequency is:
:math:`V = c \frac{f_0 - f}{f } ; f(V) = f_0 ( 1 + V/c )^{-1}`
Parameters
----------
rest : `~astropy.units.Quantity`
Any quantity supported by the standard spectral equivalencies
(wavelength, energy, frequency, wave number).
References
----------
`NRAO site defining the conventions <https://www.gb.nrao.edu/~fghigo/gbtdoc/doppler.html>`_
Examples
--------
>>> import astropy.units as u
>>> CO_restfreq = 115.27120*u.GHz # rest frequency of 12 CO 1-0 in GHz
>>> optical_CO_equiv = u.doppler_optical(CO_restfreq)
>>> measured_freq = 115.2832*u.GHz
>>> optical_velocity = measured_freq.to(u.km/u.s, equivalencies=optical_CO_equiv)
>>> optical_velocity # doctest: +FLOAT_CMP
<Quantity -31.20584348799674 km / s>
"""
assert_is_spectral_unit(rest)
ckms = _si.c.to_value("km/s")
def to_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
return ckms * (restfreq - x) / x
def from_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
voverc = x / ckms
return restfreq / (1 + voverc)
def to_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
return ckms * (x / restwav - 1)
def from_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
voverc = x / ckms
return restwav * (1 + voverc)
def to_vel_en(x):
resten = rest.to_value(si.eV, equivalencies=spectral())
return ckms * (resten - x) / x
def from_vel_en(x):
resten = rest.to_value(si.eV, equivalencies=spectral())
voverc = x / ckms
return resten / (1 + voverc)
return Equivalency(
[
(si.Hz, si.km / si.s, to_vel_freq, from_vel_freq),
(si.AA, si.km / si.s, to_vel_wav, from_vel_wav),
(si.eV, si.km / si.s, to_vel_en, from_vel_en),
],
"doppler_optical",
{"rest": rest},
)
[docs]
def doppler_relativistic(rest):
r"""
Return the equivalency pairs for the relativistic convention for velocity.
The full relativistic convention for the relation between velocity and frequency is:
:math:`V = c \frac{f_0^2 - f^2}{f_0^2 + f^2} ; f(V) = f_0 \frac{\left(1 - (V/c)^2\right)^{1/2}}{(1+V/c)}`
Parameters
----------
rest : `~astropy.units.Quantity`
Any quantity supported by the standard spectral equivalencies
(wavelength, energy, frequency, wave number).
References
----------
`NRAO site defining the conventions <https://www.gb.nrao.edu/~fghigo/gbtdoc/doppler.html>`_
Examples
--------
>>> import astropy.units as u
>>> CO_restfreq = 115.27120*u.GHz # rest frequency of 12 CO 1-0 in GHz
>>> relativistic_CO_equiv = u.doppler_relativistic(CO_restfreq)
>>> measured_freq = 115.2832*u.GHz
>>> relativistic_velocity = measured_freq.to(u.km/u.s, equivalencies=relativistic_CO_equiv)
>>> relativistic_velocity # doctest: +FLOAT_CMP
<Quantity -31.207467619351537 km / s>
>>> measured_velocity = 1250 * u.km/u.s
>>> relativistic_frequency = measured_velocity.to(u.GHz, equivalencies=relativistic_CO_equiv)
>>> relativistic_frequency # doctest: +FLOAT_CMP
<Quantity 114.79156866993588 GHz>
>>> relativistic_wavelength = measured_velocity.to(u.mm, equivalencies=relativistic_CO_equiv)
>>> relativistic_wavelength # doctest: +FLOAT_CMP
<Quantity 2.6116243681798923 mm>
"""
assert_is_spectral_unit(rest)
ckms = _si.c.to_value("km/s")
def to_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
return (restfreq**2 - x**2) / (restfreq**2 + x**2) * ckms
def from_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
voverc = x / ckms
return restfreq * ((1 - voverc) / (1 + (voverc))) ** 0.5
def to_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
return (x**2 - restwav**2) / (restwav**2 + x**2) * ckms
def from_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
voverc = x / ckms
return restwav * ((1 + voverc) / (1 - voverc)) ** 0.5
def to_vel_en(x):
resten = rest.to_value(si.eV, spectral())
return (resten**2 - x**2) / (resten**2 + x**2) * ckms
def from_vel_en(x):
resten = rest.to_value(si.eV, spectral())
voverc = x / ckms
return resten * ((1 - voverc) / (1 + (voverc))) ** 0.5
return Equivalency(
[
(si.Hz, si.km / si.s, to_vel_freq, from_vel_freq),
(si.AA, si.km / si.s, to_vel_wav, from_vel_wav),
(si.eV, si.km / si.s, to_vel_en, from_vel_en),
],
"doppler_relativistic",
{"rest": rest},
)
[docs]
def doppler_redshift():
"""
Returns the equivalence between Doppler redshift (unitless) and radial velocity.
.. note::
This equivalency is not compatible with cosmological
redshift in `astropy.cosmology.units`.
"""
rv_unit = si.km / si.s
C_KMS = _si.c.to_value(rv_unit)
def convert_z_to_rv(z):
zponesq = (1 + z) ** 2
return C_KMS * (zponesq - 1) / (zponesq + 1)
def convert_rv_to_z(rv):
beta = rv / C_KMS
return np.sqrt((1 + beta) / (1 - beta)) - 1
return Equivalency(
[(dimensionless_unscaled, rv_unit, convert_z_to_rv, convert_rv_to_z)],
"doppler_redshift",
)
[docs]
def molar_mass_amu():
"""
Returns the equivalence between amu and molar mass.
"""
return Equivalency([(si.g / si.mol, misc.u)], "molar_mass_amu")
[docs]
def mass_energy():
"""
Returns a list of equivalence pairs that handle the conversion
between mass and energy.
"""
c2 = _si.c.value**2
return Equivalency(
[
(si.kg, si.J, lambda x: x * c2, lambda x: x / c2),
(si.kg / si.m**2, si.J / si.m**2, lambda x: x * c2, lambda x: x / c2),
(si.kg / si.m**3, si.J / si.m**3, lambda x: x * c2, lambda x: x / c2),
(si.kg / si.s, si.J / si.s, lambda x: x * c2, lambda x: x / c2),
],
"mass_energy",
)
[docs]
def brightness_temperature(frequency, beam_area=None):
r"""
Defines the conversion between Jy/sr and "brightness temperature",
:math:`T_B`, in Kelvins. The brightness temperature is a unit very
commonly used in radio astronomy. See, e.g., "Tools of Radio Astronomy"
(Wilson 2009) eqn 8.16 and eqn 8.19 (these pages are available on `google
books
<https://books.google.com/books?id=9KHw6R8rQEMC&pg=PA179&source=gbs_toc_r&cad=4#v=onepage&q&f=false>`__).
:math:`T_B \equiv S_\nu / \left(2 k \nu^2 / c^2 \right)`
If the input is in Jy/beam or Jy (assuming it came from a single beam), the
beam area is essential for this computation: the brightness temperature is
inversely proportional to the beam area.
Parameters
----------
frequency : `~astropy.units.Quantity`
The observed ``spectral`` equivalent `~astropy.units.Unit` (e.g.,
frequency or wavelength). The variable is named 'frequency' because it
is more commonly used in radio astronomy.
BACKWARD COMPATIBILITY NOTE: previous versions of the brightness
temperature equivalency used the keyword ``disp``, which is no longer
supported.
beam_area : `~astropy.units.Quantity` ['solid angle']
Beam area in angular units, i.e. steradian equivalent
Examples
--------
Arecibo C-band beam::
>>> import numpy as np
>>> from astropy import units as u
>>> beam_sigma = 50*u.arcsec
>>> beam_area = 2*np.pi*(beam_sigma)**2
>>> freq = 5*u.GHz
>>> equiv = u.brightness_temperature(freq)
>>> (1*u.Jy/beam_area).to(u.K, equivalencies=equiv) # doctest: +FLOAT_CMP
<Quantity 3.526295144567176 K>
VLA synthetic beam::
>>> bmaj = 15*u.arcsec
>>> bmin = 15*u.arcsec
>>> fwhm_to_sigma = 1./(8*np.log(2))**0.5
>>> beam_area = 2.*np.pi*(bmaj*bmin*fwhm_to_sigma**2)
>>> freq = 5*u.GHz
>>> equiv = u.brightness_temperature(freq)
>>> (u.Jy/beam_area).to(u.K, equivalencies=equiv) # doctest: +FLOAT_CMP
<Quantity 217.2658703625732 K>
Any generic surface brightness:
>>> surf_brightness = 1e6*u.MJy/u.sr
>>> surf_brightness.to(u.K, equivalencies=u.brightness_temperature(500*u.GHz)) # doctest: +FLOAT_CMP
<Quantity 130.1931904778803 K>
"""
nu = frequency.to(si.GHz, spectral())
factor_Jy = (2 * _si.k_B * si.K * nu**2 / _si.c**2).to(astrophys.Jy).value
factor_K = (astrophys.Jy / (2 * _si.k_B * nu**2 / _si.c**2)).to(si.K).value
if beam_area is not None:
beam = beam_area.to_value(si.sr)
def convert_Jy_to_K(x_jybm):
return x_jybm / beam / factor_Jy
def convert_K_to_Jy(x_K):
return x_K * beam / factor_K
return Equivalency(
[
(astrophys.Jy, si.K, convert_Jy_to_K, convert_K_to_Jy),
(astrophys.Jy / astrophys.beam, si.K, convert_Jy_to_K, convert_K_to_Jy),
],
"brightness_temperature",
{"frequency": frequency, "beam_area": beam_area},
)
else:
def convert_JySr_to_K(x_jysr):
return x_jysr / factor_Jy
def convert_K_to_JySr(x_K):
return x_K / factor_K # multiplied by 1x for 1 steradian
return Equivalency(
[(astrophys.Jy / si.sr, si.K, convert_JySr_to_K, convert_K_to_JySr)],
"brightness_temperature",
{"frequency": frequency, "beam_area": beam_area},
)
[docs]
def beam_angular_area(beam_area):
"""
Convert between the ``beam`` unit, which is commonly used to express the area
of a radio telescope resolution element, and an area on the sky.
This equivalency also supports direct conversion between ``Jy/beam`` and
``Jy/steradian`` units, since that is a common operation.
Parameters
----------
beam_area : unit-like
The area of the beam in angular area units (e.g., steradians)
Must have angular area equivalent units.
"""
return Equivalency(
[
(astrophys.beam, Unit(beam_area)),
(astrophys.beam**-1, Unit(beam_area) ** -1),
(astrophys.Jy / astrophys.beam, astrophys.Jy / Unit(beam_area)),
],
"beam_angular_area",
{"beam_area": beam_area},
)
[docs]
def thermodynamic_temperature(frequency, T_cmb=None):
r"""Defines the conversion between Jy/sr and "thermodynamic temperature",
:math:`T_{CMB}`, in Kelvins. The thermodynamic temperature is a unit very
commonly used in cosmology. See eqn 8 in [1].
:math:`K_{CMB} \equiv I_\nu / \left(2 k \nu^2 / c^2 f(\nu) \right)`
with :math:`f(\nu) = \frac{ x^2 e^x}{(e^x - 1 )^2}`
where :math:`x = h \nu / k T`
Parameters
----------
frequency : `~astropy.units.Quantity`
The observed `spectral` equivalent `~astropy.units.Unit` (e.g.,
frequency or wavelength). Must have spectral units.
T_cmb : `~astropy.units.Quantity` ['temperature'] or None
The CMB temperature at z=0. If `None`, the default cosmology will be
used to get this temperature. Must have units of temperature.
Notes
-----
For broad band receivers, this conversion do not hold
as it highly depends on the frequency
References
----------
.. [1] Planck 2013 results. IX. HFI spectral response
https://arxiv.org/abs/1303.5070
Examples
--------
Planck HFI 143 GHz::
>>> from astropy import units as u
>>> from astropy.cosmology import Planck15
>>> freq = 143 * u.GHz
>>> equiv = u.thermodynamic_temperature(freq, Planck15.Tcmb0)
>>> (1. * u.mK).to(u.MJy / u.sr, equivalencies=equiv) # doctest: +FLOAT_CMP
<Quantity 0.37993172 MJy / sr>
"""
nu = frequency.to(si.GHz, spectral())
if T_cmb is None:
from astropy.cosmology import default_cosmology
T_cmb = default_cosmology.get().Tcmb0
def f(nu, T_cmb=T_cmb):
x = _si.h * nu / _si.k_B / T_cmb
return x**2 * np.exp(x) / np.expm1(x) ** 2
def convert_Jy_to_K(x_jybm):
factor = (f(nu) * 2 * _si.k_B * si.K * nu**2 / _si.c**2).to_value(astrophys.Jy)
return x_jybm / factor
def convert_K_to_Jy(x_K):
factor = (astrophys.Jy / (f(nu) * 2 * _si.k_B * nu**2 / _si.c**2)).to_value(
si.K
)
return x_K / factor
return Equivalency(
[(astrophys.Jy / si.sr, si.K, convert_Jy_to_K, convert_K_to_Jy)],
"thermodynamic_temperature",
{"frequency": frequency, "T_cmb": T_cmb},
)
[docs]
def temperature():
"""Convert between Kelvin, Celsius, Rankine and Fahrenheit here because
Unit and CompositeUnit cannot do addition or subtraction properly.
"""
from .imperial import deg_F as F
from .imperial import deg_R as R
K = si.K
C = si.deg_C
return Equivalency(
[
(K, C, lambda x: x - 273.15, lambda x: x + 273.15),
(C, F, lambda x: x * 1.8 + 32.0, lambda x: (x - 32.0) / 1.8),
(K, F, lambda x: x * 1.8 - 459.67, lambda x: (x + 459.67) / 1.8),
(R, F, lambda x: x - 459.67, lambda x: x + 459.67),
(R, C, lambda x: (x - 491.67) * (5 / 9), lambda x: x * 1.8 + 491.67),
(R, K, lambda x: x * (5 / 9), lambda x: x * 1.8),
],
"temperature",
)
[docs]
def temperature_energy():
"""Convert between Kelvin and keV(eV) to an equivalent amount."""
e = _si.e.value
k_B = _si.k_B.value
return Equivalency(
[(si.K, si.eV, lambda x: x / (e / k_B), lambda x: x * (e / k_B))],
"temperature_energy",
)
def assert_is_spectral_unit(value):
try:
value.to(si.Hz, spectral())
except (AttributeError, UnitsError) as ex:
raise UnitsError(
"The 'rest' value must be a spectral equivalent "
"(frequency, wavelength, or energy)."
)
[docs]
def pixel_scale(pixscale):
"""
Convert between pixel distances (in units of ``pix``) and other units,
given a particular ``pixscale``.
Parameters
----------
pixscale : `~astropy.units.Quantity`
The pixel scale either in units of <unit>/pixel or pixel/<unit>.
"""
decomposed = pixscale.unit.decompose()
dimensions = dict(zip(decomposed.bases, decomposed.powers))
pix_power = dimensions.get(misc.pix, 0)
if pix_power == -1:
physical_unit = Unit(pixscale * misc.pix)
elif pix_power == 1:
physical_unit = Unit(misc.pix / pixscale)
else:
raise UnitsError(
"The pixel scale unit must have pixel dimensionality of 1 or -1."
)
return Equivalency(
[(misc.pix, physical_unit)], "pixel_scale", {"pixscale": pixscale}
)
[docs]
def plate_scale(platescale):
"""
Convert between lengths (to be interpreted as lengths in the focal plane)
and angular units with a specified ``platescale``.
Parameters
----------
platescale : `~astropy.units.Quantity`
The pixel scale either in units of distance/pixel or distance/angle.
"""
if platescale.unit.is_equivalent(si.arcsec / si.m):
platescale_val = platescale.to_value(si.radian / si.m)
elif platescale.unit.is_equivalent(si.m / si.arcsec):
platescale_val = (1 / platescale).to_value(si.radian / si.m)
else:
raise UnitsError("The pixel scale must be in angle/distance or distance/angle")
return Equivalency(
[(si.m, si.radian, lambda d: d * platescale_val, lambda a: a / platescale_val)],
"plate_scale",
{"platescale": platescale},
)