The `astropy.cosmology` subpackage contains classes for representing
cosmologies, and utility functions for calculating commonly used
quantities that depend on a cosmological model. This includes
distances, ages and lookback times corresponding to a measured
redshift or the transverse separation corresponding to a measured
angular separation.

Cosmological quantities are calculated using methods of a
`Cosmology` object. For example, to calculate the
Hubble constant at z=0 (i.e., `H0`), and the number of transverse proper
kpc corresponding to an arcminute at z=3:

```
>>> from astropy.cosmology import WMAP9 as cosmo
>>> cosmo.H(0)
<Quantity 69.32 km / (Mpc s)>
```

```
>>> cosmo.kpc_proper_per_arcmin(3)
<Quantity 472.97709620405266 kpc / arcmin>
```

Here WMAP9 is a built-in object describing a cosmology with the
parameters from the 9-year WMAP results. Several other built-in
cosmologies are also available, see Built-in Cosmologies. The
available methods of the cosmology object are listed in the methods
summary for the `FLRW` class. If you’re using
IPython you can also use tab completion to print a list of the
available methods. To do this, after importing the cosmology as in the
above example, type `cosmo.` at the IPython prompt and then press
the tab key.

All of these methods also accept an array of redshifts as input:

```
>>> from astropy.cosmology import WMAP9 as cosmo
>>> cosmo.comoving_distance([0.5, 1.0, 1.5])
<Quantity [ 1916.0694236 , 3363.07064333, 4451.74756242] Mpc>
```

You can create your own arbitrary cosmology using one of the Cosmology classes:

```
>>> from astropy.cosmology import FlatLambdaCDM
>>> cosmo = FlatLambdaCDM(H0=70, Om0=0.3)
>>> cosmo
FlatLambdaCDM(H0=70 km / (Mpc s), Om0=0.3, Tcmb0=2.725 K,
Neff=3.04, m_nu=[ 0. 0. 0.] eV)
```

The cosmology subpackage makes use of `units`, so in many
cases returns values with units attached. Consult the documentation
for that subpackage for more details, but briefly, to access the
floating point or array values:

```
>>> from astropy.cosmology import WMAP9 as cosmo
>>> H0 = cosmo.H(0)
>>> H0.value, H0.unit
(69.32, Unit("km / (Mpc s)"))
```

Most of the functionality is enabled by the `FLRW`
object. This represents a homogeneous and isotropic cosmology
(characterized by the Friedmann-Lemaitre-Robertson-Walker metric,
named after the people who solved Einstein’s field equation for this
special case). However, you can’t work with this class directly, as
you must specify a dark energy model by using one of its subclasses
instead, such as `FlatLambdaCDM`.

You can create a new `FlatLambdaCDM` object with
arguments giving the Hubble parameter and omega matter (both at z=0):

```
>>> from astropy.cosmology import FlatLambdaCDM
>>> cosmo = FlatLambdaCDM(H0=70, Om0=0.3)
>>> cosmo
FlatLambdaCDM(H0=70 km / (Mpc s), Om0=0.3, Tcmb0=2.725 K,
Neff=3.04, m_nu=[ 0. 0. 0.] eV)
```

This can also be done more explicitly using units, which is recommended:

```
>>> from astropy.cosmology import FlatLambdaCDM
>>> import astropy.units as u
>>> cosmo = FlatLambdaCDM(H0=70 * u.km / u.s / u.Mpc, Om0=0.3)
```

However, most of the parameters that accept units (`H0`, `Tcmb0`)
have default units, so unit quantities do not have to be used.
The exception are neutrino masses, where you must supply a
units if you want massive neutrinos.

The pre-defined cosmologies described in the Getting Started
section are instances of `FlatLambdaCDM`, and have
the same methods. So we can find the luminosity distance to
redshift 4 by:

```
>>> cosmo.luminosity_distance(4)
<Quantity 35842.353618623194 Mpc>
```

or the age of the universe at z = 0:

```
>>> cosmo.age(0)
<Quantity 13.461701658024014 Gyr>
```

They also accept arrays of redshifts:

```
>>> cosmo.age([0.5, 1, 1.5]).value
array([ 8.42128047, 5.74698053, 4.19645402])
```

See the `FLRW` and
`FlatLambdaCDM` object docstring for all the
methods and attributes available. In addition to flat Universes,
non-flat varieties are supported such as
`LambdaCDM`. There are also a variety of standard
cosmologies with the parameters already defined (see Built-in
Cosmologies):

```
>>> from astropy.cosmology import WMAP7 # WMAP 7-year cosmology
>>> WMAP7.critical_density(0) # critical density at z = 0
<Quantity 9.31000324385361e-30 g / cm3>
```

You can see how the density parameters evolve with redshift as well:

```
>>> from astropy.cosmology import WMAP7 # WMAP 7-year cosmology
>>> WMAP7.Om([0, 1.0, 2.0]), WMAP7.Ode([0., 1.0, 2.0])
(array([ 0.272 , 0.74898524, 0.90905239]),
array([ 0.72791572, 0.25055061, 0.0901026 ]))
```

Note that these don’t quite add up to one even though WMAP7 assumes a
flat Universe because photons and neutrinos are included. Also note
that they are unitless and so are not `Quantity`
objects.

Cosmological instances have an optional `name` attribute which can be
used to describe the cosmology:

```
>>> from astropy.cosmology import FlatwCDM
>>> cosmo = FlatwCDM(name='SNLS3+WMAP7', H0=71.58, Om0=0.262, w0=-1.016)
>>> cosmo
FlatwCDM(name="SNLS3+WMAP7", H0=71.6 km / (Mpc s), Om0=0.262,
w0=-1.02, Tcmb0=2.725 K, Neff=3.04, m_nu=[ 0. 0. 0.] eV)
```

This is also an example with a different model for dark energy, a flat Universe with a constant dark energy equation of state, but not necessarily a cosmological constant. A variety of additional dark energy models are also supported – see Specifying a dark energy model.

A important point is that the cosmological parameters of each
instance are immutable – that is, if you want to change, say,
`Om`, you need to make a new instance of the class.

If you know a cosmological quantity and you want to know the
redshift which it corresponds to, you can use `z_at_value`:

```
>>> import astropy.units as u
>>> from astropy.cosmology import Planck13, z_at_value
>>> z_at_value(Planck13.age, 2 * u.Gyr)
3.1981226843560968
```

For some quantities there can be more than one redshift that satisfies
a value. In this case you can use the `zmin` and `zmax` keywords
to restrict the search range. See the `z_at_value` docstring for more
detailed usage examples.

A number of pre-loaded cosmologies are available from analyses using the WMAP and Planck satellite data. For example,

```
>>> from astropy.cosmology import Planck13 # Planck 2013
>>> Planck13.lookback_time(2) # lookback time in Gyr at z=2
<Quantity 10.511841788576083 Gyr>
```

A full list of the pre-defined cosmologies is given by
`cosmology.parameters.available`, and summarized below:

Name | Source | H0 | Om | Flat |
---|---|---|---|---|

WMAP5 | Komatsu et al. 2009 | 70.2 | 0.277 | Yes |

WMAP7 | Komatsu et al. 2011 | 70.4 | 0.272 | Yes |

WMAP9 | Hinshaw et al. 2013 | 69.3 | 0.287 | Yes |

Planck13 | Planck Collab 2013, Paper XVI | 67.8 | 0.307 | Yes |

Currently, all are instances of `FlatLambdaCDM`.
More details about exactly where each set of parameters come from
are available in the docstring for each object:

```
>>> from astropy.cosmology import WMAP7
>>> print(WMAP7.__doc__)
WMAP7 instance of FlatLambdaCDM cosmology
(from Komatsu et al. 2011, ApJS, 192, 18, doi: 10.1088/0067-0049/192/2/18.
Table 1 (WMAP + BAO + H0 ML).)
```

In addition to the standard `FlatLambdaCDM` model
described above, a number of additional dark energy models are
provided. `FlatLambdaCDM`
and `LambdaCDM` assume that dark
energy is a cosmological constant, and should be the most commonly
used cases; the former assumes a flat Universe, the latter allows
for spatial curvature. `FlatwCDM` and
`wCDM` assume a constant dark
energy equation of state parameterized by . Two forms of a
variable dark energy equation of state are provided: the simple first
order linear expansion by
`w0wzCDM`, as well as the common CPL form by
`w0waCDM`: and its generalization to include a pivot
redshift by `wpwaCDM`: .

Users can specify their own equation of state by sub-classing
`FLRW`. See the provided subclasses for
examples.

The cosmology classes include the contribution to the energy density
from both photons and neutrinos. By default, the latter are assumed
massless. The three parameters controlling the proporties of these
species, which are arguments to the initializers of all the
cosmological classes, are `Tcmb0` (the temperature of the CMB at z=0),
`Neff`, the effective number of neutrino species, and `m_nu`, the rest
mass of the neutrino species. `Tcmb0` and `m_nu` should be expressed
as unit Quantities. All three have standard default values (2.725 K,
3.04, and 0 eV respectively; the reason that `Neff` is not 3 primarily
has to do with a small bump in the neutrino energy spectrum due to
electron-positron annihilation, but is also affected by weak
interaction physics).

Massive neutrinos are treated using the approach described in the WMAP 7-year cosmology paper (Komatsu et al. 2011, ApJS, 192, 18, section 3.3). This is not the simple approximation. Also note that the values of include both the kinetic energy and the rest-mass energy components, and that the Planck13 cosmology includes a single species of neutrinos with non-zero mass (which is not included in ).

The contribution of photons and neutrinos to the total mass-energy density can be found as a function of redshift:

```
>>> from astropy.cosmology import WMAP7 # WMAP 7-year cosmology
>>> WMAP7.Ogamma0, WMAP7.Onu0 # Current epoch values
(4.985694972799396e-05, 3.442154948307989e-05)
>>> z = [0, 1.0, 2.0]
>>> WMAP7.Ogamma(z), WMAP7.Onu(z)
(array([ 4.98569497e-05, 2.74574409e-04, 4.99881391e-04]),
array([ 3.44215495e-05, 1.89567887e-04, 3.45121234e-04]))
```

If you want to exclude photons and neutrinos from your calculations,
simply set `Tcmb0` to 0:

```
>>> from astropy.cosmology import FlatLambdaCDM
>>> import astropy.units as u
>>> cos = FlatLambdaCDM(70.4 * u.km / u.s / u.Mpc, 0.272, Tcmb0 = 0.0 * u.K)
>>> cos.Ogamma0, cos.Onu0
(0.0, 0.0)
```

Neutrinos can be removed (while leaving photons) by setting `Neff` to 0:

```
>>> from astropy.cosmology import FlatLambdaCDM
>>> cos = FlatLambdaCDM(70.4, 0.272, Neff=0)
>>> cos.Ogamma([0, 1, 2]) # Photons are still present
array([ 4.98569497e-05, 2.74623215e-04, 5.00051839e-04])
>>> cos.Onu([0, 1, 2]) # But not neutrinos
array([ 0., 0., 0.])
```

The number of neutrino species is assumed to be the floor of `Neff`,
which in the default case is 3. Therefore, if non-zero neutrino masses
are desired, then 3 masses should be provided. However, if only one
value is provided, all the species are assumed to have the same mass.
`Neff` is assumed to be shared equally between each species.

```
>>> from astropy.cosmology import FlatLambdaCDM
>>> import astropy.units as u
>>> H0 = 70.4 * u.km / u.s / u.Mpc
>>> m_nu = 0 * u.eV
>>> cosmo = FlatLambdaCDM(H0, 0.272, m_nu=m_nu)
>>> cosmo.has_massive_nu
False
>>> cosmo.m_nu
<Quantity [ 0., 0., 0.] eV>
>>> m_nu = [0.0, 0.05, 0.10] * u.eV
>>> cosmo = FlatLambdaCDM(H0, 0.272, m_nu=m_nu)
>>> cosmo.has_massive_nu
True
>>> cosmo.m_nu
<Quantity [ 0. , 0.05, 0.1 ] eV>
>>> cosmo.Onu([0, 1.0, 15.0])
array([ 0.00326988, 0.00896783, 0.0125786 ])
>>> cosmo.Onu(1) * cosmo.critical_density(1)
<Quantity 2.444380380370406e-31 g / cm3>
```

While these examples used `FlatLambdaCDM`,
the above examples also apply for all of the other cosmology classes.

If you are writing code for the Astropy core or an affiliated package, it’s often useful to assume a default cosmology, so that the exact cosmology doesn’t have to be specified every time a function or method is called. In this case it’s possible to specify a “default” cosmology.

You can set the default cosmology to a pre-defined value by using the
“default_cosmology” option in the `[cosmology.core]` section of the
configuration file (see *Configuration system (astropy.config)*). Alternatively, you can
use the `set` function of `default_cosmology` to
set a cosmology for the current Python session. If you haven’t set a
default cosmology using one of the methods described above, then the
cosmology module will default to using the 9-year WMAP parameters.

It is strongly recommended that you use the default cosmology through
the `default_cosmology` science state object. An
override option can then be provided using something like the
following:

```
def myfunc(..., cosmo=None):
from astropy.cosmology import default_cosmology
if cosmo is None:
cosmo = default_cosmology.get()
... your code here ...
```

This ensures that all code consistently uses the default cosmology unless explicitly overridden.

Note

In general it’s better to use an explicit cosmology (for example
`WMAP9.H(0)` instead of
`cosmology.default_cosmology.get().H(0)`). Use of the default
cosmology should generally be reserved for code that will be
included in the Astropy core or an affiliated package.

- Hogg, “Distance measures in cosmology”, http://arxiv.org/abs/astroph/9905116
- Linder, “Exploring the Expansion History of the Universe”, http://arxiv.org/abs/astro-ph/0208512
- NASA’s Legacy Archive for Microwave Background Data Analysis, http://lambda.gsfc.nasa.gov/

The code in this sub-package is tested against several widely-used
online cosmology calculators, and has been used to perform many
calculations in refereed papers. You can check the range of redshifts
over which the code is regularly tested in the module
`astropy.cosmology.tests.test_cosmology`. If you find any bugs,
please let us know by opening an issue at the github repository!

The built in cosmologies use the parameters as listed in the respective papers. These provide only a limited range of precision, and so you should not expect derived quantities to match beyond that precision. For example, the Planck 2013 results only provide the Hubble constant to 4 digits. Therefore, the Planck13 built-in cosmology should only be expected to match the age of the Universe quoted by the Planck team to 4 digits, although they provide 5 in the paper.

astropy.cosmology contains classes and functions for cosmological distance measures and other cosmology-related calculations.

See the Astropy documentation for more detailed usage examples and references.

H(*args, **kwargs) |
Deprecated since version 0.4. |

angular_diameter_distance(*args, **kwargs) |
Deprecated since version 0.4. |

arcsec_per_kpc_comoving(*args, **kwargs) |
Deprecated since version 0.4. |

arcsec_per_kpc_proper(*args, **kwargs) |
Deprecated since version 0.4. |

comoving_distance(*args, **kwargs) |
Deprecated since version 0.4. |

critical_density(*args, **kwargs) |
Deprecated since version 0.4. |

distmod(*args, **kwargs) |
Deprecated since version 0.4. |

get_current(*args, **kwargs) |
Deprecated since version 0.4. |

kpc_comoving_per_arcmin(*args, **kwargs) |
Deprecated since version 0.4. |

kpc_proper_per_arcmin(*args, **kwargs) |
Deprecated since version 0.4. |

lookback_time(*args, **kwargs) |
Deprecated since version 0.4. |

luminosity_distance(*args, **kwargs) |
Deprecated since version 0.4. |

scale_factor(*args, **kwargs) |
Deprecated since version 0.4. |

set_current(*args, **kwargs) |
Deprecated since version 0.4. |

z_at_value(func, fval[, zmin, zmax, ztol, ...]) |
Find the redshift z at which func(z) = fval. |

FLRW(H0, Om0, Ode0[, Tcmb0, Neff, m_nu, name]) |
A class describing an isotropic and homogeneous (Friedmann-Lemaitre-Robertson-Walker) cosmology. |

FlatLambdaCDM(H0, Om0[, Tcmb0, Neff, m_nu, name]) |
FLRW cosmology with a cosmological constant and no curvature. |

Flatw0waCDM(H0, Om0[, w0, wa, Tcmb0, Neff, ...]) |
FLRW cosmology with a CPL dark energy equation of state and no curvature. |

FlatwCDM(H0, Om0[, w0, Tcmb0, Neff, m_nu, name]) |
FLRW cosmology with a constant dark energy equation of state and no spatial curvature. |

LambdaCDM(H0, Om0, Ode0[, Tcmb0, Neff, ...]) |
FLRW cosmology with a cosmological constant and curvature. |

default_cosmology() |
The default cosmology to use. |

w0waCDM(H0, Om0, Ode0[, w0, wa, Tcmb0, ...]) |
FLRW cosmology with a CPL dark energy equation of state and curvature. |

w0wzCDM(H0, Om0, Ode0[, w0, wz, Tcmb0, ...]) |
FLRW cosmology with a variable dark energy equation of state and curvature. |

wCDM(H0, Om0, Ode0[, w0, Tcmb0, Neff, m_nu, ...]) |
FLRW cosmology with a constant dark energy equation of state and curvature. |

wpwaCDM(H0, Om0, Ode0[, wp, wa, zp, Tcmb0, ...]) |
FLRW cosmology with a CPL dark energy equation of state, a pivot redshift, and curvature. |