class astropy.stats.PointMeasures(p0=0.05, gamma=None, ncp_prior=None)[source] [edit on github]

Bases: astropy.stats.FitnessFunc

Bayesian blocks fitness for point measures


p0 : float (optional)

False alarm probability, used to compute the prior on \(N_{\rm blocks}\) (see eq. 21 of Scargle 2012). If gamma is specified, p0 is ignored.

ncp_prior : float (optional)

If specified, use the value of ncp_prior to compute the prior as above, using the definition \({\tt ncp\_prior} = -\ln({\tt gamma})\). If ncp_prior is specified, gamma and p0 are ignored.

Methods Summary

fitness(a_k, b_k)
validate_input(t, x, sigma) Validate inputs to the model.

Methods Documentation

fitness(a_k, b_k)[source] [edit on github]
validate_input(t, x, sigma)[source] [edit on github]

Validate inputs to the model.


t : array_like

times of observations

x : array_like (optional)

values observed at each time

sigma : float or array_like (optional)

errors in values x


t, x, sigma : array_like, float or None

validated and perhaps modified versions of inputs