PowerLaw1D

class astropy.modeling.powerlaws.PowerLaw1D(amplitude=1, x_0=1, alpha=1, **kwargs)[source] [edit on github]

Bases: astropy.modeling.Fittable1DModel

One dimensional power law model.

Parameters:

amplitude : float

Model amplitude at the reference point

x_0 : float

Reference point

alpha : float

Power law index

Other Parameters:
 

fixed : a dict

A dictionary {parameter_name: boolean} of parameters to not be varied during fitting. True means the parameter is held fixed. Alternatively the fixed property of a parameter may be used.

tied : dict

A dictionary {parameter_name: callable} of parameters which are linked to some other parameter. The dictionary values are callables providing the linking relationship. Alternatively the tied property of a parameter may be used.

bounds : dict

A dictionary {parameter_name: boolean} of lower and upper bounds of parameters. Keys are parameter names. Values are a list of length 2 giving the desired range for the parameter. Alternatively the min and max properties of a parameter may be used.

eqcons : list

A list of functions of length n such that eqcons[j](x0,*args) == 0.0 in a successfully optimized problem.

ineqcons : list

A list of functions of length n such that ieqcons[j](x0,*args) >= 0.0 is a successfully optimized problem.

Notes

Model formula (with \(A\) for amplitude and \(\alpha\) for alpha):

\[f(x) = A (x / x_0) ^ {-\alpha}\]

Attributes Summary

alpha
amplitude
input_units
param_names
x_0

Methods Summary

evaluate(x, amplitude, x_0, alpha) One dimensional power law model function
fit_deriv(x, amplitude, x_0, alpha) One dimensional power law derivative with respect to parameters

Attributes Documentation

alpha
amplitude
input_units
param_names = ('amplitude', 'x_0', 'alpha')
x_0

Methods Documentation

static evaluate(x, amplitude, x_0, alpha)[source] [edit on github]

One dimensional power law model function

static fit_deriv(x, amplitude, x_0, alpha)[source] [edit on github]

One dimensional power law derivative with respect to parameters