MexicanHat1D

class astropy.modeling.functional_models.MexicanHat1D(amplitude=1, x_0=0, sigma=1, **kwargs)[source] [edit on github]

Bases: astropy.modeling.Fittable1DModel

One dimensional Mexican Hat model.

Parameters:

amplitude : float

Amplitude

x_0 : float

Position of the peak

sigma : float

Width of the Mexican hat

Other Parameters:
 

fixed : a dict

A dictionary {parameter_name: boolean} of parameters to not be varied during fitting. True means the parameter is held fixed. Alternatively the fixed property of a parameter may be used.

tied : dict

A dictionary {parameter_name: callable} of parameters which are linked to some other parameter. The dictionary values are callables providing the linking relationship. Alternatively the tied property of a parameter may be used.

bounds : dict

A dictionary {parameter_name: boolean} of lower and upper bounds of parameters. Keys are parameter names. Values are a list of length 2 giving the desired range for the parameter. Alternatively the min and max properties of a parameter may be used.

eqcons : list

A list of functions of length n such that eqcons[j](x0,*args) == 0.0 in a successfully optimized problem.

ineqcons : list

A list of functions of length n such that ieqcons[j](x0,*args) >= 0.0 is a successfully optimized problem.

Notes

Model formula:

\[f(x) = {A \left(1 - \frac{\left(x - x_{0}\right)^{2}}{\sigma^{2}}\right) e^{- \frac{\left(x - x_{0}\right)^{2}}{2 \sigma^{2}}}}\]

Examples

import numpy as np
import matplotlib.pyplot as plt

from astropy.modeling.models import MexicanHat1D

plt.figure()
s1 = MexicanHat1D()
r = np.arange(-5, 5, .01)

for factor in range(1, 4):
    s1.amplitude = factor
    s1.width = factor
    plt.plot(r, s1(r), color=str(0.25 * factor), lw=2)

plt.axis([-5, 5, -2, 4])
plt.show()

(png, svg, pdf)

../_images/astropy-modeling-functional_models-MexicanHat1D-1.png

Attributes Summary

amplitude
input_units This property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or None if any units are accepted).
param_names
sigma
x_0

Methods Summary

evaluate(amplitude, x_0, sigma) One dimensional Mexican Hat model function

Attributes Documentation

amplitude
input_units

This property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or None if any units are accepted).

Model sub-classes can also use function annotations in evaluate to indicate valid input units, in which case this property should not be overriden since it will return the input units based on the annotations.

param_names = ('amplitude', 'x_0', 'sigma')
sigma
x_0

Methods Documentation

static evaluate(amplitude, x_0, sigma)[source] [edit on github]

One dimensional Mexican Hat model function