Source code for astropy.cosmology.core

# Licensed under a 3-clause BSD style license - see LICENSE.rst


import sys
from math import acos, sin, cos, sqrt, pi, exp, log, floor
from abc import ABCMeta, abstractmethod
from inspect import signature

import numpy as np

from . import scalar_inv_efuncs

from astropy import constants as const
from astropy import units as u
from astropy.utils import isiterable
from astropy.utils.state import ScienceState

from . import parameters

# Originally authored by Andrew Becker (becker@astro.washington.edu),
# and modified by Neil Crighton (neilcrighton@gmail.com) and Roban
# Kramer (robanhk@gmail.com).

# Many of these adapted from Hogg 1999, astro-ph/9905116
# and Linder 2003, PRL 90, 91301

__all__ = ["FLRW", "LambdaCDM", "FlatLambdaCDM", "wCDM", "FlatwCDM",
           "Flatw0waCDM", "w0waCDM", "wpwaCDM", "w0wzCDM",
           "default_cosmology"] + parameters.available

__doctest_requires__ = {'*': ['scipy.integrate', 'scipy.special']}

# Notes about speeding up integrals:
# ---------------------------------
#  The supplied cosmology classes use a few tricks to speed
#  up distance and time integrals.  It is not necessary for
#  anyone subclassing FLRW to use these tricks -- but if they
#  do, such calculations may be a lot faster.
# The first, more basic, idea is that, in many cases, it's a big deal to
#  provide explicit formulae for inv_efunc rather than simply
#  setting up de_energy_scale -- assuming there is a nice expression.
#  As noted above, almost all of the provided classes do this, and
#  that template can pretty much be followed directly with the appropriate
#  formula changes.
# The second, and more advanced, option is to also explicitly
#  provide a scalar only version of inv_efunc.  This results in a fairly
#  large speedup (>10x in most cases) in the distance and age integrals,
#  even if only done in python,  because testing whether the inputs are
#  iterable or pure scalars turns out to be rather expensive. To take
#  advantage of this, the key thing is to explicitly set the
#  instance variables self._inv_efunc_scalar and self._inv_efunc_scalar_args
#  in the constructor for the subclass, where the latter are all the
#  arguments except z to _inv_efunc_scalar.
#
#  The provided classes do use this optimization, and in fact go
#  even further and provide optimizations for no radiation, and for radiation
#  with massless neutrinos coded in cython.  Consult the subclasses for
#  details, and scalar_inv_efuncs for the details.
#
#  However, the important point is that it is -not- necessary to do this.

# Some conversion constants -- useful to compute them once here
#  and reuse in the initialization rather than have every object do them
# Note that the call to cgs is actually extremely expensive,
#  so we actually skip using the units package directly, and
#  hardwire the conversion from mks to cgs. This assumes that constants
#  will always return mks by default -- if this is made faster for simple
#  cases like this, it should be changed back.
# Note that the unit tests should catch it if this happens
H0units_to_invs = (u.km / (u.s * u.Mpc)).to(1.0 / u.s)
sec_to_Gyr = u.s.to(u.Gyr)
# const in critical density in cgs units (g cm^-3)
critdens_const = 3. / (8. * pi * const.G.value * 1000)
arcsec_in_radians = pi / (3600. * 180)
arcmin_in_radians = pi / (60. * 180)
# Radiation parameter over c^2 in cgs (g cm^-3 K^-4)
a_B_c2 = 4e-3 * const.sigma_sb.value / const.c.value ** 3
# Boltzmann constant in eV / K
kB_evK = const.k_B.to(u.eV / u.K)


class CosmologyError(Exception):
    pass


class Cosmology:
    """ Placeholder for when a more general Cosmology class is
    implemented. """


[docs]class FLRW(Cosmology, metaclass=ABCMeta): """ A class describing an isotropic and homogeneous (Friedmann-Lemaitre-Robertson-Walker) cosmology. This is an abstract base class -- you can't instantiate examples of this class, but must work with one of its subclasses such as `LambdaCDM` or `wCDM`. Parameters ---------- H0 : float or scalar `~astropy.units.Quantity` Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Note that this does not include massive neutrinos. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. Tcmb0 : float or scalar `~astropy.units.Quantity`, optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : `~astropy.units.Quantity`, optional Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str, optional Name for this cosmological object. Notes ----- Class instances are static -- you can't change the values of the parameters. That is, all of the attributes above are read only. """ def __init__(self, H0, Om0, Ode0, Tcmb0=0, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), Ob0=None, name=None): # all densities are in units of the critical density self._Om0 = float(Om0) if self._Om0 < 0.0: raise ValueError("Matter density can not be negative") self._Ode0 = float(Ode0) if Ob0 is not None: self._Ob0 = float(Ob0) if self._Ob0 < 0.0: raise ValueError("Baryonic density can not be negative") if self._Ob0 > self._Om0: raise ValueError("Baryonic density can not be larger than " "total matter density") self._Odm0 = self._Om0 - self._Ob0 else: self._Ob0 = None self._Odm0 = None self._Neff = float(Neff) if self._Neff < 0.0: raise ValueError("Effective number of neutrinos can " "not be negative") self.name = name # Tcmb may have units self._Tcmb0 = u.Quantity(Tcmb0, unit=u.K) if not self._Tcmb0.isscalar: raise ValueError("Tcmb0 is a non-scalar quantity") # Hubble parameter at z=0, km/s/Mpc self._H0 = u.Quantity(H0, unit=u.km / u.s / u.Mpc) if not self._H0.isscalar: raise ValueError("H0 is a non-scalar quantity") # 100 km/s/Mpc * h = H0 (so h is dimensionless) self._h = self._H0.value / 100. # Hubble distance self._hubble_distance = (const.c / self._H0).to(u.Mpc) # H0 in s^-1; don't use units for speed H0_s = self._H0.value * H0units_to_invs # Hubble time; again, avoiding units package for speed self._hubble_time = u.Quantity(sec_to_Gyr / H0_s, u.Gyr) # critical density at z=0 (grams per cubic cm) cd0value = critdens_const * H0_s ** 2 self._critical_density0 = u.Quantity(cd0value, u.g / u.cm ** 3) # Load up neutrino masses. Note: in Py2.x, floor is floating self._nneutrinos = int(floor(self._Neff)) # We are going to share Neff between the neutrinos equally. # In detail this is not correct, but it is a standard assumption # because properly calculating it is a) complicated b) depends # on the details of the massive neutrinos (e.g., their weak # interactions, which could be unusual if one is considering sterile # neutrinos) self._massivenu = False if self._nneutrinos > 0 and self._Tcmb0.value > 0: self._neff_per_nu = self._Neff / self._nneutrinos # We can't use the u.Quantity constructor as we do above # because it doesn't understand equivalencies if not isinstance(m_nu, u.Quantity): raise ValueError("m_nu must be a Quantity") m_nu = m_nu.to(u.eV, equivalencies=u.mass_energy()) # Now, figure out if we have massive neutrinos to deal with, # and, if so, get the right number of masses # It is worth the effort to keep track of massless ones separately # (since they are quite easy to deal with, and a common use case # is to set only one neutrino to have mass) if m_nu.isscalar: # Assume all neutrinos have the same mass if m_nu.value == 0: self._nmasslessnu = self._nneutrinos self._nmassivenu = 0 else: self._massivenu = True self._nmasslessnu = 0 self._nmassivenu = self._nneutrinos self._massivenu_mass = (m_nu.value * np.ones(self._nneutrinos)) else: # Make sure we have the right number of masses # -unless- they are massless, in which case we cheat a little if m_nu.value.min() < 0: raise ValueError("Invalid (negative) neutrino mass" " encountered") if m_nu.value.max() == 0: self._nmasslessnu = self._nneutrinos self._nmassivenu = 0 else: self._massivenu = True if len(m_nu) != self._nneutrinos: errstr = "Unexpected number of neutrino masses" raise ValueError(errstr) # Segregate out the massless ones self._nmasslessnu = len(np.nonzero(m_nu.value == 0)[0]) self._nmassivenu = self._nneutrinos - self._nmasslessnu w = np.nonzero(m_nu.value > 0)[0] self._massivenu_mass = m_nu[w] # Compute photon density, Tcmb, neutrino parameters # Tcmb0=0 removes both photons and neutrinos, is handled # as a special case for efficiency if self._Tcmb0.value > 0: # Compute photon density from Tcmb self._Ogamma0 = a_B_c2 * self._Tcmb0.value ** 4 /\ self._critical_density0.value # Compute Neutrino temperature # The constant in front is (4/11)^1/3 -- see any # cosmology book for an explanation -- for example, # Weinberg 'Cosmology' p 154 eq (3.1.21) self._Tnu0 = 0.7137658555036082 * self._Tcmb0 # Compute Neutrino Omega and total relativistic component # for massive neutrinos. We also store a list version, # since that is more efficient to do integrals with (perhaps # surprisingly! But small python lists are more efficient # than small numpy arrays). if self._massivenu: nu_y = self._massivenu_mass / (kB_evK * self._Tnu0) self._nu_y = nu_y.value self._nu_y_list = self._nu_y.tolist() self._Onu0 = self._Ogamma0 * self.nu_relative_density(0) else: # This case is particularly simple, so do it directly # The 0.2271... is 7/8 (4/11)^(4/3) -- the temperature # bit ^4 (blackbody energy density) times 7/8 for # FD vs. BE statistics. self._Onu0 = 0.22710731766 * self._Neff * self._Ogamma0 else: self._Ogamma0 = 0.0 self._Tnu0 = u.Quantity(0.0, u.K) self._Onu0 = 0.0 # Compute curvature density self._Ok0 = 1.0 - self._Om0 - self._Ode0 - self._Ogamma0 - self._Onu0 # Subclasses should override this reference if they provide # more efficient scalar versions of inv_efunc. self._inv_efunc_scalar = self.inv_efunc self._inv_efunc_scalar_args = () def _namelead(self): """ Helper function for constructing __repr__""" if self.name is None: return "{0}(".format(self.__class__.__name__) else: return "{0}(name=\"{1}\", ".format(self.__class__.__name__, self.name) def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Ode0={3:.3g}, "\ "Tcmb0={4:.4g}, Neff={5:.3g}, m_nu={6}, "\ "Ob0={7:s})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Ode0, self._Tcmb0, self._Neff, self.m_nu, _float_or_none(self._Ob0)) # Set up a set of properties for H0, Om0, Ode0, Ok0, etc. for user access. # Note that we don't let these be set (so, obj.Om0 = value fails) @property def H0(self): """ Return the Hubble constant as an `~astropy.units.Quantity` at z=0""" return self._H0 @property def Om0(self): """ Omega matter; matter density/critical density at z=0""" return self._Om0 @property def Ode0(self): """ Omega dark energy; dark energy density/critical density at z=0""" return self._Ode0 @property def Ob0(self): """ Omega baryon; baryonic matter density/critical density at z=0""" return self._Ob0 @property def Odm0(self): """ Omega dark matter; dark matter density/critical density at z=0""" return self._Odm0 @property def Ok0(self): """ Omega curvature; the effective curvature density/critical density at z=0""" return self._Ok0 @property def Tcmb0(self): """ Temperature of the CMB as `~astropy.units.Quantity` at z=0""" return self._Tcmb0 @property def Tnu0(self): """ Temperature of the neutrino background as `~astropy.units.Quantity` at z=0""" return self._Tnu0 @property def Neff(self): """ Number of effective neutrino species""" return self._Neff @property def has_massive_nu(self): """ Does this cosmology have at least one massive neutrino species?""" if self._Tnu0.value == 0: return False return self._massivenu @property def m_nu(self): """ Mass of neutrino species""" if self._Tnu0.value == 0: return None if not self._massivenu: # Only massless return u.Quantity(np.zeros(self._nmasslessnu), u.eV) if self._nmasslessnu == 0: # Only massive return u.Quantity(self._massivenu_mass, u.eV) # A mix -- the most complicated case numass = np.append(np.zeros(self._nmasslessnu), self._massivenu_mass.value) return u.Quantity(numass, u.eV) @property def h(self): """ Dimensionless Hubble constant: h = H_0 / 100 [km/sec/Mpc]""" return self._h @property def hubble_time(self): """ Hubble time as `~astropy.units.Quantity`""" return self._hubble_time @property def hubble_distance(self): """ Hubble distance as `~astropy.units.Quantity`""" return self._hubble_distance @property def critical_density0(self): """ Critical density as `~astropy.units.Quantity` at z=0""" return self._critical_density0 @property def Ogamma0(self): """ Omega gamma; the density/critical density of photons at z=0""" return self._Ogamma0 @property def Onu0(self): """ Omega nu; the density/critical density of neutrinos at z=0""" return self._Onu0
[docs] def clone(self, **kwargs): """ Returns a copy of this object, potentially with some changes. Returns ------- newcos : Subclass of FLRW A new instance of this class with the specified changes. Notes ----- This assumes that the values of all constructor arguments are available as properties, which is true of all the provided subclasses but may not be true of user-provided ones. You can't change the type of class, so this can't be used to change between flat and non-flat. If no modifications are requested, then a reference to this object is returned. Examples -------- To make a copy of the Planck13 cosmology with a different Omega_m and a new name: >>> from astropy.cosmology import Planck13 >>> newcos = Planck13.clone(name="Modified Planck 2013", Om0=0.35) """ # Quick return check, taking advantage of the # immutability of cosmological objects if len(kwargs) == 0: return self # Get constructor arguments arglist = signature(self.__init__).parameters.keys() # Build the dictionary of values used to construct this # object. This -assumes- every argument to __init__ has a # property. This is true of all the classes we provide, but # maybe a user won't do that. So at least try to have a useful # error message. argdict = {} for arg in arglist: try: val = getattr(self, arg) argdict[arg] = val except AttributeError: # We didn't find a property -- complain usefully errstr = "Object did not have property corresponding "\ "to constructor argument '{}'; perhaps it is a "\ "user provided subclass that does not do so" raise AttributeError(errstr.format(arg)) # Now substitute in new arguments for newarg in kwargs: if newarg not in argdict: errstr = "User provided argument '{}' not found in "\ "constructor for this object" raise AttributeError(errstr.format(newarg)) argdict[newarg] = kwargs[newarg] return self.__class__(**argdict)
[docs] @abstractmethod def w(self, z): """ The dark energy equation of state. Parameters ---------- z : array-like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ----- The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. This must be overridden by subclasses. """ raise NotImplementedError("w(z) is not implemented")
[docs] def Om(self, z): """ Return the density parameter for non-relativistic matter at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- Om : ndarray, or float if input scalar The density of non-relativistic matter relative to the critical density at each redshift. Notes ----- This does not include neutrinos, even if non-relativistic at the redshift of interest; see `Onu`. """ if isiterable(z): z = np.asarray(z) return self._Om0 * (1. + z) ** 3 * self.inv_efunc(z) ** 2
[docs] def Ob(self, z): """ Return the density parameter for baryonic matter at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- Ob : ndarray, or float if input scalar The density of baryonic matter relative to the critical density at each redshift. Raises ------ ValueError If Ob0 is None. """ if self._Ob0 is None: raise ValueError("Baryon density not set for this cosmology") if isiterable(z): z = np.asarray(z) return self._Ob0 * (1. + z) ** 3 * self.inv_efunc(z) ** 2
[docs] def Odm(self, z): """ Return the density parameter for dark matter at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- Odm : ndarray, or float if input scalar The density of non-relativistic dark matter relative to the critical density at each redshift. Raises ------ ValueError If Ob0 is None. Notes ----- This does not include neutrinos, even if non-relativistic at the redshift of interest. """ if self._Odm0 is None: raise ValueError("Baryonic density not set for this cosmology, " "unclear meaning of dark matter density") if isiterable(z): z = np.asarray(z) return self._Odm0 * (1. + z) ** 3 * self.inv_efunc(z) ** 2
[docs] def Ok(self, z): """ Return the equivalent density parameter for curvature at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- Ok : ndarray, or float if input scalar The equivalent density parameter for curvature at each redshift. """ if isiterable(z): z = np.asarray(z) # Common enough case to be worth checking explicitly if self._Ok0 == 0: return np.zeros(np.asanyarray(z).shape) else: if self._Ok0 == 0: return 0.0 return self._Ok0 * (1. + z) ** 2 * self.inv_efunc(z) ** 2
[docs] def Ode(self, z): """ Return the density parameter for dark energy at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- Ode : ndarray, or float if input scalar The density of non-relativistic matter relative to the critical density at each redshift. """ if isiterable(z): z = np.asarray(z) # Common case worth checking if self._Ode0 == 0: return np.zeros(np.asanyarray(z).shape) else: if self._Ode0 == 0: return 0.0 return self._Ode0 * self.de_density_scale(z) * self.inv_efunc(z) ** 2
[docs] def Ogamma(self, z): """ Return the density parameter for photons at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- Ogamma : ndarray, or float if input scalar The energy density of photons relative to the critical density at each redshift. """ if isiterable(z): z = np.asarray(z) return self._Ogamma0 * (1. + z) ** 4 * self.inv_efunc(z) ** 2
[docs] def Onu(self, z): """ Return the density parameter for neutrinos at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- Onu : ndarray, or float if input scalar The energy density of neutrinos relative to the critical density at each redshift. Note that this includes their kinetic energy (if they have mass), so it is not equal to the commonly used :math:`\\sum \\frac{m_{\\nu}}{94 eV}`, which does not include kinetic energy. """ if isiterable(z): z = np.asarray(z) if self._Onu0 == 0: return np.zeros(np.asanyarray(z).shape) else: if self._Onu0 == 0: return 0.0 return self.Ogamma(z) * self.nu_relative_density(z)
[docs] def Tcmb(self, z): """ Return the CMB temperature at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- Tcmb : `~astropy.units.Quantity` The temperature of the CMB in K. """ if isiterable(z): z = np.asarray(z) return self._Tcmb0 * (1. + z)
[docs] def Tnu(self, z): """ Return the neutrino temperature at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- Tnu : `~astropy.units.Quantity` The temperature of the cosmic neutrino background in K. """ if isiterable(z): z = np.asarray(z) return self._Tnu0 * (1. + z)
[docs] def nu_relative_density(self, z): """ Neutrino density function relative to the energy density in photons. Parameters ---------- z : array like Redshift Returns ------- f : ndarray, or float if z is scalar The neutrino density scaling factor relative to the density in photons at each redshift Notes ----- The density in neutrinos is given by .. math:: \\rho_{\\nu} \\left(a\\right) = 0.2271 \\, N_{eff} \\, f\\left(m_{\\nu} a / T_{\\nu 0} \\right) \\, \\rho_{\\gamma} \\left( a \\right) where .. math:: f \\left(y\\right) = \\frac{120}{7 \\pi^4} \\int_0^{\\infty} \\, dx \\frac{x^2 \\sqrt{x^2 + y^2}} {e^x + 1} assuming that all neutrino species have the same mass. If they have different masses, a similar term is calculated for each one. Note that f has the asymptotic behavior :math:`f(0) = 1`. This method returns :math:`0.2271 f` using an analytical fitting formula given in Komatsu et al. 2011, ApJS 192, 18. """ # Note that there is also a scalar-z-only cython implementation of # this in scalar_inv_efuncs.pyx, so if you find a problem in this # you need to update there too. # See Komatsu et al. 2011, eq 26 and the surrounding discussion # for an explanation of what we are doing here. # However, this is modified to handle multiple neutrino masses # by computing the above for each mass, then summing prefac = 0.22710731766 # 7/8 (4/11)^4/3 -- see any cosmo book # The massive and massless contribution must be handled separately # But check for common cases first if not self._massivenu: if np.isscalar(z): return prefac * self._Neff else: return prefac * self._Neff * np.ones(np.asanyarray(z).shape) # These are purely fitting constants -- see the Komatsu paper p = 1.83 invp = 0.54644808743 # 1.0 / p k = 0.3173 z = np.asarray(z) curr_nu_y = self._nu_y / (1. + np.expand_dims(z, axis=-1)) rel_mass_per = (1.0 + (k * curr_nu_y) ** p) ** invp rel_mass = rel_mass_per.sum(-1) + self._nmasslessnu return prefac * self._neff_per_nu * rel_mass
def _w_integrand(self, ln1pz): """ Internal convenience function for w(z) integral.""" # See Linder 2003, PRL 90, 91301 eq (5) # Assumes scalar input, since this should only be called # inside an integral z = exp(ln1pz) - 1.0 return 1.0 + self.w(z)
[docs] def de_density_scale(self, z): r""" Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array-like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\rho(z) = \rho_0 I`, and is given by .. math:: I = \exp \left( 3 \int_{a}^1 \frac{ da^{\prime} }{ a^{\prime} } \left[ 1 + w\left( a^{\prime} \right) \right] \right) It will generally helpful for subclasses to overload this method if the integral can be done analytically for the particular dark energy equation of state that they implement. """ # This allows for an arbitrary w(z) following eq (5) of # Linder 2003, PRL 90, 91301. The code here evaluates # the integral numerically. However, most popular # forms of w(z) are designed to make this integral analytic, # so it is probably a good idea for subclasses to overload this # method if an analytic form is available. # # The integral we actually use (the one given in Linder) # is rewritten in terms of z, so looks slightly different than the # one in the documentation string, but it's the same thing. from scipy.integrate import quad if isiterable(z): z = np.asarray(z) ival = np.array([quad(self._w_integrand, 0, log(1 + redshift))[0] for redshift in z]) return np.exp(3 * ival) else: ival = quad(self._w_integrand, 0, log(1 + z))[0] return exp(3 * ival)
[docs] def efunc(self, z): """ Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : array-like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H(z) = H_0 E`. It is not necessary to override this method, but if de_density_scale takes a particularly simple form, it may be advantageous to. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0 if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0 * self.de_density_scale(z))
[docs] def inv_efunc(self, z): """Inverse of efunc. Parameters ---------- z : array-like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the inverse Hubble constant. """ # Avoid the function overhead by repeating code if isiterable(z): z = np.asarray(z) Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0 if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return (zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0 * self.de_density_scale(z))**(-0.5)
def _lookback_time_integrand_scalar(self, z): """ Integrand of the lookback time. Parameters ---------- z : float Input redshift. Returns ------- I : float The integrand for the lookback time References ---------- Eqn 30 from Hogg 1999. """ args = self._inv_efunc_scalar_args return self._inv_efunc_scalar(z, *args) / (1.0 + z)
[docs] def lookback_time_integrand(self, z): """ Integrand of the lookback time. Parameters ---------- z : float or array-like Input redshift. Returns ------- I : float or array The integrand for the lookback time References ---------- Eqn 30 from Hogg 1999. """ if isiterable(z): zp1 = 1.0 + np.asarray(z) else: zp1 = 1. + z return self.inv_efunc(z) / zp1
def _abs_distance_integrand_scalar(self, z): """ Integrand of the absorption distance. Parameters ---------- z : float Input redshift. Returns ------- X : float The integrand for the absorption distance References ---------- See Hogg 1999 section 11. """ args = self._inv_efunc_scalar_args return (1.0 + z) ** 2 * self._inv_efunc_scalar(z, *args)
[docs] def abs_distance_integrand(self, z): """ Integrand of the absorption distance. Parameters ---------- z : float or array Input redshift. Returns ------- X : float or array The integrand for the absorption distance References ---------- See Hogg 1999 section 11. """ if isiterable(z): zp1 = 1.0 + np.asarray(z) else: zp1 = 1. + z return zp1 ** 2 * self.inv_efunc(z)
[docs] def H(self, z): """ Hubble parameter (km/s/Mpc) at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- H : `~astropy.units.Quantity` Hubble parameter at each input redshift. """ return self._H0 * self.efunc(z)
[docs] def scale_factor(self, z): """ Scale factor at redshift ``z``. The scale factor is defined as :math:`a = 1 / (1 + z)`. Parameters ---------- z : array-like Input redshifts. Returns ------- a : ndarray, or float if input scalar Scale factor at each input redshift. """ if isiterable(z): z = np.asarray(z) return 1. / (1. + z)
[docs] def lookback_time(self, z): """ Lookback time in Gyr to redshift ``z``. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar Returns ------- t : `~astropy.units.Quantity` Lookback time in Gyr to each input redshift. See Also -------- z_at_value : Find the redshift corresponding to a lookback time. """ return self._lookback_time(z)
def _lookback_time(self, z): """ Lookback time in Gyr to redshift ``z``. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar Returns ------- t : `~astropy.units.Quantity` Lookback time in Gyr to each input redshift. """ return self._integral_lookback_time(z) def _integral_lookback_time(self, z): """ Lookback time in Gyr to redshift ``z``. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar Returns ------- t : `~astropy.units.Quantity` Lookback time in Gyr to each input redshift. """ from scipy.integrate import quad f = lambda red: quad(self._lookback_time_integrand_scalar, 0, red)[0] return self._hubble_time * vectorize_if_needed(f, z)
[docs] def lookback_distance(self, z): """ The lookback distance is the light travel time distance to a given redshift. It is simply c * lookback_time. It may be used to calculate the proper distance between two redshifts, e.g. for the mean free path to ionizing radiation. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar Returns ------- d : `~astropy.units.Quantity` Lookback distance in Mpc """ return (self.lookback_time(z) * const.c).to(u.Mpc)
[docs] def age(self, z): """ Age of the universe in Gyr at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- t : `~astropy.units.Quantity` The age of the universe in Gyr at each input redshift. See Also -------- z_at_value : Find the redshift corresponding to an age. """ return self._age(z)
def _age(self, z): """ Age of the universe in Gyr at redshift ``z``. This internal function exists to be re-defined for optimizations. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- t : `~astropy.units.Quantity` The age of the universe in Gyr at each input redshift. """ return self._integral_age(z) def _integral_age(self, z): """ Age of the universe in Gyr at redshift ``z``. Calculated using explicit integration. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- t : `~astropy.units.Quantity` The age of the universe in Gyr at each input redshift. See Also -------- z_at_value : Find the redshift corresponding to an age. """ from scipy.integrate import quad f = lambda red: quad(self._lookback_time_integrand_scalar, red, np.inf)[0] return self._hubble_time * vectorize_if_needed(f, z)
[docs] def critical_density(self, z): """ Critical density in grams per cubic cm at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- rho : `~astropy.units.Quantity` Critical density in g/cm^3 at each input redshift. """ return self._critical_density0 * (self.efunc(z)) ** 2
[docs] def comoving_distance(self, z): """ Comoving line-of-sight distance in Mpc at a given redshift. The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` Comoving distance in Mpc to each input redshift. """ return self._comoving_distance_z1z2(0, z)
def _comoving_distance_z1z2(self, z1, z2): """ Comoving line-of-sight distance in Mpc between objects at redshifts z1 and z2. The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. Parameters ---------- z1, z2 : array-like, shape (N,) Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` Comoving distance in Mpc between each input redshift. """ return self._integral_comoving_distance_z1z2(z1, z2) def _integral_comoving_distance_z1z2(self, z1, z2): """ Comoving line-of-sight distance in Mpc between objects at redshifts z1 and z2. The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. Parameters ---------- z1, z2 : array-like, shape (N,) Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` Comoving distance in Mpc between each input redshift. """ from scipy.integrate import quad f = lambda z1, z2: quad(self._inv_efunc_scalar, z1, z2, args=self._inv_efunc_scalar_args)[0] return self._hubble_distance * vectorize_if_needed(f, z1, z2)
[docs] def comoving_transverse_distance(self, z): """ Comoving transverse distance in Mpc at a given redshift. This value is the transverse comoving distance at redshift ``z`` corresponding to an angular separation of 1 radian. This is the same as the comoving distance if omega_k is zero (as in the current concordance lambda CDM model). Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` Comoving transverse distance in Mpc at each input redshift. Notes ----- This quantity also called the 'proper motion distance' in some texts. """ return self._comoving_transverse_distance_z1z2(0, z)
def _comoving_transverse_distance_z1z2(self, z1, z2): """Comoving transverse distance in Mpc between two redshifts. This value is the transverse comoving distance at redshift ``z2`` as seen from redshift ``z1`` corresponding to an angular separation of 1 radian. This is the same as the comoving distance if omega_k is zero (as in the current concordance lambda CDM model). Parameters ---------- z1, z2 : array-like, shape (N,) Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` Comoving transverse distance in Mpc between input redshift. Notes ----- This quantity is also called the 'proper motion distance' in some texts. """ Ok0 = self._Ok0 dc = self._comoving_distance_z1z2(z1, z2) if Ok0 == 0: return dc sqrtOk0 = sqrt(abs(Ok0)) dh = self._hubble_distance if Ok0 > 0: return dh / sqrtOk0 * np.sinh(sqrtOk0 * dc.value / dh.value) else: return dh / sqrtOk0 * np.sin(sqrtOk0 * dc.value / dh.value)
[docs] def angular_diameter_distance(self, z): """ Angular diameter distance in Mpc at a given redshift. This gives the proper (sometimes called 'physical') transverse distance corresponding to an angle of 1 radian for an object at redshift ``z``. Weinberg, 1972, pp 421-424; Weedman, 1986, pp 65-67; Peebles, 1993, pp 325-327. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` Angular diameter distance in Mpc at each input redshift. """ if isiterable(z): z = np.asarray(z) return self.comoving_transverse_distance(z) / (1. + z)
[docs] def luminosity_distance(self, z): """ Luminosity distance in Mpc at redshift ``z``. This is the distance to use when converting between the bolometric flux from an object at redshift ``z`` and its bolometric luminosity. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` Luminosity distance in Mpc at each input redshift. See Also -------- z_at_value : Find the redshift corresponding to a luminosity distance. References ---------- Weinberg, 1972, pp 420-424; Weedman, 1986, pp 60-62. """ if isiterable(z): z = np.asarray(z) return (1. + z) * self.comoving_transverse_distance(z)
[docs] def angular_diameter_distance_z1z2(self, z1, z2): """ Angular diameter distance between objects at 2 redshifts. Useful for gravitational lensing. Parameters ---------- z1, z2 : array-like, shape (N,) Input redshifts. z2 must be large than z1. Returns ------- d : `~astropy.units.Quantity`, shape (N,) or single if input scalar The angular diameter distance between each input redshift pair. """ z1 = np.asanyarray(z1) z2 = np.asanyarray(z2) return self._comoving_transverse_distance_z1z2(z1, z2) / (1. + z2)
[docs] def absorption_distance(self, z): """ Absorption distance at redshift ``z``. This is used to calculate the number of objects with some cross section of absorption and number density intersecting a sightline per unit redshift path. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- d : float or ndarray Absorption distance (dimensionless) at each input redshift. References ---------- Hogg 1999 Section 11. (astro-ph/9905116) Bahcall, John N. and Peebles, P.J.E. 1969, ApJ, 156L, 7B """ from scipy.integrate import quad f = lambda red: quad(self._abs_distance_integrand_scalar, 0, red)[0] return vectorize_if_needed(f, z)
[docs] def distmod(self, z): """ Distance modulus at redshift ``z``. The distance modulus is defined as the (apparent magnitude - absolute magnitude) for an object at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- distmod : `~astropy.units.Quantity` Distance modulus at each input redshift, in magnitudes See Also -------- z_at_value : Find the redshift corresponding to a distance modulus. """ # Remember that the luminosity distance is in Mpc # Abs is necessary because in certain obscure closed cosmologies # the distance modulus can be negative -- which is okay because # it enters as the square. val = 5. * np.log10(abs(self.luminosity_distance(z).value)) + 25.0 return u.Quantity(val, u.mag)
[docs] def comoving_volume(self, z): """ Comoving volume in cubic Mpc at redshift ``z``. This is the volume of the universe encompassed by redshifts less than ``z``. For the case of omega_k = 0 it is a sphere of radius `comoving_distance` but it is less intuitive if omega_k is not 0. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- V : `~astropy.units.Quantity` Comoving volume in :math:`Mpc^3` at each input redshift. """ Ok0 = self._Ok0 if Ok0 == 0: return 4. / 3. * pi * self.comoving_distance(z) ** 3 dh = self._hubble_distance.value # .value for speed dm = self.comoving_transverse_distance(z).value term1 = 4. * pi * dh ** 3 / (2. * Ok0) * u.Mpc ** 3 term2 = dm / dh * np.sqrt(1 + Ok0 * (dm / dh) ** 2) term3 = sqrt(abs(Ok0)) * dm / dh if Ok0 > 0: return term1 * (term2 - 1. / sqrt(abs(Ok0)) * np.arcsinh(term3)) else: return term1 * (term2 - 1. / sqrt(abs(Ok0)) * np.arcsin(term3))
[docs] def differential_comoving_volume(self, z): """Differential comoving volume at redshift z. Useful for calculating the effective comoving volume. For example, allows for integration over a comoving volume that has a sensitivity function that changes with redshift. The total comoving volume is given by integrating differential_comoving_volume to redshift z and multiplying by a solid angle. Parameters ---------- z : array-like Input redshifts. Returns ------- dV : `~astropy.units.Quantity` Differential comoving volume per redshift per steradian at each input redshift.""" dh = self._hubble_distance da = self.angular_diameter_distance(z) zp1 = 1.0 + z return dh * ((zp1 * da) ** 2.0) / u.Quantity(self.efunc(z), u.steradian)
[docs] def kpc_comoving_per_arcmin(self, z): """ Separation in transverse comoving kpc corresponding to an arcminute at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` The distance in comoving kpc corresponding to an arcmin at each input redshift. """ return (self.comoving_transverse_distance(z).to(u.kpc) * arcmin_in_radians / u.arcmin)
[docs] def kpc_proper_per_arcmin(self, z): """ Separation in transverse proper kpc corresponding to an arcminute at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` The distance in proper kpc corresponding to an arcmin at each input redshift. """ return (self.angular_diameter_distance(z).to(u.kpc) * arcmin_in_radians / u.arcmin)
[docs] def arcsec_per_kpc_comoving(self, z): """ Angular separation in arcsec corresponding to a comoving kpc at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- theta : `~astropy.units.Quantity` The angular separation in arcsec corresponding to a comoving kpc at each input redshift. """ return u.arcsec / (self.comoving_transverse_distance(z).to(u.kpc) * arcsec_in_radians)
[docs] def arcsec_per_kpc_proper(self, z): """ Angular separation in arcsec corresponding to a proper kpc at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar. Returns ------- theta : `~astropy.units.Quantity` The angular separation in arcsec corresponding to a proper kpc at each input redshift. """ return u.arcsec / (self.angular_diameter_distance(z).to(u.kpc) * arcsec_in_radians)
[docs]class LambdaCDM(FLRW): """FLRW cosmology with a cosmological constant and curvature. This has no additional attributes beyond those of FLRW. Parameters ---------- H0 : float or `~astropy.units.Quantity` Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of the cosmological constant in units of the critical density at z=0. Tcmb0 : float or scalar `~astropy.units.Quantity`, optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : `~astropy.units.Quantity`, optional Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str, optional Name for this cosmological object. Examples -------- >>> from astropy.cosmology import LambdaCDM >>> cosmo = LambdaCDM(H0=70, Om0=0.3, Ode0=0.7) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Ode0, Tcmb0=0, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), Ob0=None, name=None): FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name, Ob0=Ob0) # Please see "Notes about speeding up integrals" for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.lcdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0) if self._Ok0 == 0: self._optimize_flat_norad() else: self._comoving_distance_z1z2 = \ self._elliptic_comoving_distance_z1z2 elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.lcdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0 + self._Onu0) else: self._inv_efunc_scalar = scalar_inv_efuncs.lcdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list) def _optimize_flat_norad(self): """Set optimizations for flat LCDM cosmologies with no radiation. """ # Call out the Om0=0 (de Sitter) and Om0=1 (Einstein-de Sitter) # The dS case is required because the hypergeometric case # for Omega_M=0 would lead to an infinity in its argument. # The EdS case is three times faster than the hypergeometric. if self._Om0 == 0: self._comoving_distance_z1z2 = \ self._dS_comoving_distance_z1z2 self._age = self._dS_age self._lookback_time = self._dS_lookback_time elif self._Om0 == 1: self._comoving_distance_z1z2 = \ self._EdS_comoving_distance_z1z2 self._age = self._EdS_age self._lookback_time = self._EdS_lookback_time else: self._comoving_distance_z1z2 = \ self._hypergeometric_comoving_distance_z1z2 self._age = self._flat_age self._lookback_time = self._flat_lookback_time
[docs] def w(self, z): """Returns dark energy equation of state at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ------ The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = -1`. """ if np.isscalar(z): return -1.0 else: return -1.0 * np.ones(np.asanyarray(z).shape)
[docs] def de_density_scale(self, z): """ Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array-like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`, and in this case is given by :math:`I = 1`. """ if np.isscalar(z): return 1. else: return np.ones(np.asanyarray(z).shape)
def _elliptic_comoving_distance_z1z2(self, z1, z2): """ Comoving transverse distance in Mpc between two redshifts. This value is the transverse comoving distance at redshift ``z`` corresponding to an angular separation of 1 radian. This is the same as the comoving distance if omega_k is zero. For Omega_rad = 0 the comoving distance can be directly calculated as an elliptic integral. Equation here taken from Kantowski, Kao, and Thomas, arXiv:0002334 Not valid or appropriate for flat cosmologies (Ok0=0). Parameters ---------- z1, z2 : array-like Input redshifts. Returns ------- d : `~astropy.units.Quantity` Comoving distance in Mpc between each input redshift. """ from scipy.special import ellipkinc if isiterable(z1): z1 = np.asarray(z1) if isiterable(z2): z2 = np.asarray(z2) if isiterable(z1) and isiterable(z2): if z1.shape != z2.shape: msg = "z1 and z2 have different shapes" raise ValueError(msg) # The analytic solution is not valid for any of Om0, Ode0, Ok0 == 0. # Use the explicit integral solution for these cases. if self._Om0 == 0 or self._Ode0 == 0 or self._Ok0 == 0: return self._integral_comoving_distance_z1z2(z1, z2) b = -(27. / 2) * self._Om0**2 * self._Ode0 / self._Ok0**3 kappa = b / abs(b) if (b < 0) or (2 < b): def phi_z(Om0, Ok0, kappa, y1, A, z): return np.arccos(((1 + z) * Om0 / abs(Ok0) + kappa * y1 - A) / ((1 + z) * Om0 / abs(Ok0) + kappa * y1 + A)) v_k = pow(kappa * (b - 1) + sqrt(b * (b - 2)), 1. / 3) y1 = (-1 + kappa * (v_k + 1 / v_k)) / 3 A = sqrt(y1 * (3 * y1 + 2)) g = 1 / sqrt(A) k2 = (2 * A + kappa * (1 + 3 * y1)) / (4 * A) phi_z1 = phi_z(self._Om0, self._Ok0, kappa, y1, A, z1) phi_z2 = phi_z(self._Om0, self._Ok0, kappa, y1, A, z2) # Get lower-right 0<b<2 solution in Om0, Ode0 plane. # Fot the upper-left 0<b<2 solution the Big Bang didn't happen. elif (0 < b) and (b < 2) and self._Om0 > self._Ode0: def phi_z(Om0, Ok0, y1, y2, z): return np.arcsin(np.sqrt((y1 - y2) / ((1 + z) * Om0 / abs(Ok0) + y1))) yb = cos(acos(1 - b) / 3) yc = sqrt(3) * sin(acos(1 - b) / 3) y1 = (1. / 3) * (-1 + yb + yc) y2 = (1. / 3) * (-1 - 2 * yb) y3 = (1. / 3) * (-1 + yb - yc) g = 2 / sqrt(y1 - y2) k2 = (y1 - y3) / (y1 - y2) phi_z1 = phi_z(self._Om0, self._Ok0, y1, y2, z1) phi_z2 = phi_z(self._Om0, self._Ok0, y1, y2, z2) else: return self._integral_comoving_distance_z1z2(z1, z2) prefactor = self._hubble_distance / sqrt(abs(self._Ok0)) return prefactor * g * (ellipkinc(phi_z1, k2) - ellipkinc(phi_z2, k2)) def _dS_comoving_distance_z1z2(self, z1, z2): """ Comoving line-of-sight distance in Mpc between objects at redshifts z1 and z2 in a flat, Omega_Lambda=1 cosmology (de Sitter). The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. The de Sitter case has an analytic solution. Parameters ---------- z1, z2 : array-like, shape (N,) Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` Comoving distance in Mpc between each input redshift. """ if isiterable(z1): z1 = np.asarray(z1) z2 = np.asarray(z2) if z1.shape != z2.shape: msg = "z1 and z2 have different shapes" raise ValueError(msg) return self._hubble_distance * (z2 - z1) def _EdS_comoving_distance_z1z2(self, z1, z2): """ Comoving line-of-sight distance in Mpc between objects at redshifts z1 and z2 in a flat, Omega_M=1 cosmology (Einstein - de Sitter). The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. For OM=1, Omega_rad=0 the comoving distance has an analytic solution. Parameters ---------- z1, z2 : array-like, shape (N,) Input redshifts. Must be 1D or scalar. Returns ------- d : `~astropy.units.Quantity` Comoving distance in Mpc between each input redshift. """ if isiterable(z1): z1 = np.asarray(z1) z2 = np.asarray(z2) if z1.shape != z2.shape: msg = "z1 and z2 have different shapes" raise ValueError(msg) prefactor = 2 * self._hubble_distance return prefactor * ((1+z1)**(-1./2) - (1+z2)**(-1./2)) def _hypergeometric_comoving_distance_z1z2(self, z1, z2): """ Comoving line-of-sight distance in Mpc between objects at redshifts z1 and z2. The comoving distance along the line-of-sight between two objects remains constant with time for objects in the Hubble flow. For Omega_radiation = 0 the comoving distance can be directly calculated as a hypergeometric function. Equation here taken from Baes, Camps, Van De Putte, 2017, MNRAS, 468, 927. Parameters ---------- z1, z2 : array-like Input redshifts. Returns ------- d : `~astropy.units.Quantity` Comoving distance in Mpc between each input redshift. """ if isiterable(z1): z1 = np.asarray(z1) z2 = np.asarray(z2) if z1.shape != z2.shape: msg = "z1 and z2 have different shapes" raise ValueError(msg) s = ((1 - self._Om0) / self._Om0) ** (1./3) # Use np.sqrt here to handle negative s (Om0>1). prefactor = self._hubble_distance / np.sqrt(s * self._Om0) return prefactor * (self._T_hypergeometric(s / (1 + z1)) - self._T_hypergeometric(s / (1 + z2))) def _T_hypergeometric(self, x): """ Compute T_hypergeometric(x) using Gauss Hypergeometric function 2F1 T(x) = 2 \\sqrt(x) _{2}F_{1} \\left(\\frac{1}{6}, \\frac{1}{2}; \\frac{7}{6}; -x^3) Note: The scipy.special.hyp2f1 code already implements the hypergeometric transformation suggested by Baes, Camps, Van De Putte, 2017, MNRAS, 468, 927. for use in actual numerical evaulations. """ from scipy.special import hyp2f1 return 2 * np.sqrt(x) * hyp2f1(1./6, 1./2, 7./6, -x**3) def _dS_age(self, z): """ Age of the universe in Gyr at redshift ``z``. The age of a de Sitter Universe is infinite. Parameters ---------- z : array-like Input redshifts. Returns ------- t : `~astropy.units.Quantity` The age of the universe in Gyr at each input redshift. """ return self._hubble_time * inf_like(z) def _EdS_age(self, z): """ Age of the universe in Gyr at redshift ``z``. For Omega_radiation = 0 (T_CMB = 0; massless neutrinos) the age can be directly calculated as an elliptic integral. See, e.g., Thomas and Kantowski, arXiv:0003463 Parameters ---------- z : array-like Input redshifts. Returns ------- t : `~astropy.units.Quantity` The age of the universe in Gyr at each input redshift. """ if isiterable(z): z = np.asarray(z) return (2./3) * self._hubble_time * (1+z)**(-3./2) def _flat_age(self, z): """ Age of the universe in Gyr at redshift ``z``. For Omega_radiation = 0 (T_CMB = 0; massless neutrinos) the age can be directly calculated as an elliptic integral. See, e.g., Thomas and Kantowski, arXiv:0003463 Parameters ---------- z : array-like Input redshifts. Returns ------- t : `~astropy.units.Quantity` The age of the universe in Gyr at each input redshift. """ if isiterable(z): z = np.asarray(z) # Use np.sqrt, np.arcsinh instead of math.sqrt, math.asinh # to handle properly the complex numbers for 1 - Om0 < 0 prefactor = (2./3) * self._hubble_time / \ np.lib.scimath.sqrt(1 - self._Om0) arg = np.arcsinh(np.lib.scimath.sqrt((1 / self._Om0 - 1 + 0j) / (1 + z)**3)) return (prefactor * arg).real def _EdS_lookback_time(self, z): """ Lookback time in Gyr to redshift ``z``. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. For Omega_radiation = 0 (T_CMB = 0; massless neutrinos) the age can be directly calculated as an elliptic integral. The lookback time is here calculated based on the age(0) - age(z) Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar Returns ------- t : `~astropy.units.Quantity` Lookback time in Gyr to each input redshift. """ return self._EdS_age(0) - self._EdS_age(z) def _dS_lookback_time(self, z): """ Lookback time in Gyr to redshift ``z``. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. For Omega_radiation = 0 (T_CMB = 0; massless neutrinos) the age can be directly calculated. a = exp(H * t) where t=0 at z=0 t = (1/H) (ln 1 - ln a) = (1/H) (0 - ln (1/(1+z))) = (1/H) ln(1+z) Parameters ---------- z : array-like Input redshifts. Returns ------- t : `~astropy.units.Quantity` Lookback time in Gyr to each input redshift. """ if isiterable(z): z = np.asarray(z) return self._hubble_time * np.log(1+z) def _flat_lookback_time(self, z): """ Lookback time in Gyr to redshift ``z``. The lookback time is the difference between the age of the Universe now and the age at redshift ``z``. For Omega_radiation = 0 (T_CMB = 0; massless neutrinos) the age can be directly calculated. The lookback time is here calculated based on the age(0) - age(z) Parameters ---------- z : array-like Input redshifts. Must be 1D or scalar Returns ------- t : `~astropy.units.Quantity` Lookback time in Gyr to each input redshift. """ return self._flat_age(0) - self._flat_age(z)
[docs] def efunc(self, z): """ Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : array-like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H(z) = H_0 E`. """ if isiterable(z): z = np.asarray(z) # We override this because it takes a particularly simple # form for a cosmological constant Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0)
[docs] def inv_efunc(self, z): r""" Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : array-like Input redshifts. Returns ------- E : ndarray, or float if input scalar The inverse redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H_z = H_0 / E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, Ok0 = self._Om0, self._Ode0, self._Ok0 if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return (zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0)**(-0.5)
[docs]class FlatLambdaCDM(LambdaCDM): """FLRW cosmology with a cosmological constant and no curvature. This has no additional attributes beyond those of FLRW. Parameters ---------- H0 : float or `~astropy.units.Quantity` Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Tcmb0 : float or scalar `~astropy.units.Quantity`, optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : `~astropy.units.Quantity`, optional Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str, optional Name for this cosmological object. Examples -------- >>> from astropy.cosmology import FlatLambdaCDM >>> cosmo = FlatLambdaCDM(H0=70, Om0=0.3) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Tcmb0=0, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), Ob0=None, name=None): LambdaCDM.__init__(self, H0, Om0, 0.0, Tcmb0, Neff, m_nu, name=name, Ob0=Ob0) # Do some twiddling after the fact to get flatness self._Ode0 = 1.0 - self._Om0 - self._Ogamma0 - self._Onu0 self._Ok0 = 0.0 # Please see "Notes about speeding up integrals" for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.flcdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0) # Repeat the optimization reassignments here because the init # of the LambaCDM above didn't actually create a flat cosmology. # That was done through the explicit tweak setting self._Ok0. self._optimize_flat_norad() elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.flcdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0 + self._Onu0) else: self._inv_efunc_scalar = scalar_inv_efuncs.flcdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list)
[docs] def efunc(self, z): """ Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : array-like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H(z) = H_0 E`. """ if isiterable(z): z = np.asarray(z) # We override this because it takes a particularly simple # form for a cosmological constant Om0, Ode0 = self._Om0, self._Ode0 if self._massivenu: Or = self._Ogamma0 * (1 + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return np.sqrt(zp1 ** 3 * (Or * zp1 + Om0) + Ode0)
[docs] def inv_efunc(self, z): r"""Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : array-like Input redshifts. Returns ------- E : ndarray, or float if input scalar The inverse redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H_z = H_0 / E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0 = self._Om0, self._Ode0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return (zp1 ** 3 * (Or * zp1 + Om0) + Ode0)**(-0.5)
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Tcmb0={3:.4g}, "\ "Neff={4:.3g}, m_nu={5}, Ob0={6:s})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Tcmb0, self._Neff, self.m_nu, _float_or_none(self._Ob0))
[docs]class wCDM(FLRW): """FLRW cosmology with a constant dark energy equation of state and curvature. This has one additional attribute beyond those of FLRW. Parameters ---------- H0 : float or `~astropy.units.Quantity` Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. w0 : float, optional Dark energy equation of state at all redshifts. This is pressure/density for dark energy in units where c=1. A cosmological constant has w0=-1.0. Tcmb0 : float or scalar `~astropy.units.Quantity`, optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : `~astropy.units.Quantity`, optional Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str, optional Name for this cosmological object. Examples -------- >>> from astropy.cosmology import wCDM >>> cosmo = wCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Ode0, w0=-1., Tcmb0=0, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), Ob0=None, name=None): FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name, Ob0=Ob0) self._w0 = float(w0) # Please see "Notes about speeding up integrals" for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.wcdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._w0) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.wcdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0 + self._Onu0, self._w0) else: self._inv_efunc_scalar = scalar_inv_efuncs.wcdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._w0) @property def w0(self): """ Dark energy equation of state""" return self._w0
[docs] def w(self, z): """Returns dark energy equation of state at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ------ The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = w_0`. """ if np.isscalar(z): return self._w0 else: return self._w0 * np.ones(np.asanyarray(z).shape)
[docs] def de_density_scale(self, z): """ Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array-like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`, and in this case is given by :math:`I = \\left(1 + z\\right)^{3\\left(1 + w_0\\right)}` """ if isiterable(z): z = np.asarray(z) return (1. + z) ** (3. * (1. + self._w0))
[docs] def efunc(self, z): """ Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : array-like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H(z) = H_0 E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, Ok0, w0 = self._Om0, self._Ode0, self._Ok0, self._w0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return np.sqrt(zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0 * zp1 ** (3. * (1. + w0)))
[docs] def inv_efunc(self, z): r""" Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : array-like Input redshifts. Returns ------- E : ndarray, or float if input scalar The inverse redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H_z = H_0 / E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, Ok0, w0 = self._Om0, self._Ode0, self._Ok0, self._w0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1.0 + z return (zp1 ** 2 * ((Or * zp1 + Om0) * zp1 + Ok0) + Ode0 * zp1 ** (3. * (1. + w0)))**(-0.5)
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Ode0={3:.3g}, w0={4:.3g}, "\ "Tcmb0={5:.4g}, Neff={6:.3g}, m_nu={7}, Ob0={8:s})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Ode0, self._w0, self._Tcmb0, self._Neff, self.m_nu, _float_or_none(self._Ob0))
[docs]class FlatwCDM(wCDM): """FLRW cosmology with a constant dark energy equation of state and no spatial curvature. This has one additional attribute beyond those of FLRW. Parameters ---------- H0 : float or `~astropy.units.Quantity` Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. w0 : float, optional Dark energy equation of state at all redshifts. This is pressure/density for dark energy in units where c=1. A cosmological constant has w0=-1.0. Tcmb0 : float or scalar `~astropy.units.Quantity`, optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : `~astropy.units.Quantity`, optional Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str, optional Name for this cosmological object. Examples -------- >>> from astropy.cosmology import FlatwCDM >>> cosmo = FlatwCDM(H0=70, Om0=0.3, w0=-0.9) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, w0=-1., Tcmb0=0, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), Ob0=None, name=None): wCDM.__init__(self, H0, Om0, 0.0, w0, Tcmb0, Neff, m_nu, name=name, Ob0=Ob0) # Do some twiddling after the fact to get flatness self._Ode0 = 1.0 - self._Om0 - self._Ogamma0 - self._Onu0 self._Ok0 = 0.0 # Please see "Notes about speeding up integrals" for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.fwcdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._w0) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.fwcdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0 + self._Onu0, self._w0) else: self._inv_efunc_scalar = scalar_inv_efuncs.fwcdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._w0)
[docs] def efunc(self, z): """ Function used to calculate H(z), the Hubble parameter. Parameters ---------- z : array-like Input redshifts. Returns ------- E : ndarray, or float if input scalar The redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H(z) = H_0 E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, w0 = self._Om0, self._Ode0, self._w0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1. + z return np.sqrt(zp1 ** 3 * (Or * zp1 + Om0) + Ode0 * zp1 ** (3. * (1 + w0)))
[docs] def inv_efunc(self, z): r""" Function used to calculate :math:`\frac{1}{H_z}`. Parameters ---------- z : array-like Input redshifts. Returns ------- E : ndarray, or float if input scalar The inverse redshift scaling of the Hubble constant. Notes ----- The return value, E, is defined such that :math:`H_z = H_0 / E`. """ if isiterable(z): z = np.asarray(z) Om0, Ode0, w0 = self._Om0, self._Ode0, self._w0 if self._massivenu: Or = self._Ogamma0 * (1. + self.nu_relative_density(z)) else: Or = self._Ogamma0 + self._Onu0 zp1 = 1. + z return (zp1 ** 3 * (Or * zp1 + Om0) + Ode0 * zp1 ** (3. * (1. + w0)))**(-0.5)
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, w0={3:.3g}, Tcmb0={4:.4g}, "\ "Neff={5:.3g}, m_nu={6}, Ob0={7:s})" return retstr.format(self._namelead(), self._H0, self._Om0, self._w0, self._Tcmb0, self._Neff, self.m_nu, _float_or_none(self._Ob0))
[docs]class w0waCDM(FLRW): """FLRW cosmology with a CPL dark energy equation of state and curvature. The equation for the dark energy equation of state uses the CPL form as described in Chevallier & Polarski Int. J. Mod. Phys. D10, 213 (2001) and Linder PRL 90, 91301 (2003): :math:`w(z) = w_0 + w_a (1-a) = w_0 + w_a z / (1+z)`. Parameters ---------- H0 : float or `~astropy.units.Quantity` Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. w0 : float, optional Dark energy equation of state at z=0 (a=1). This is pressure/density for dark energy in units where c=1. wa : float, optional Negative derivative of the dark energy equation of state with respect to the scale factor. A cosmological constant has w0=-1.0 and wa=0.0. Tcmb0 : float or scalar `~astropy.units.Quantity`, optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : `~astropy.units.Quantity`, optional Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str, optional Name for this cosmological object. Examples -------- >>> from astropy.cosmology import w0waCDM >>> cosmo = w0waCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9, wa=0.2) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Ode0, w0=-1., wa=0., Tcmb0=0, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), Ob0=None, name=None): FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name, Ob0=Ob0) self._w0 = float(w0) self._wa = float(wa) # Please see "Notes about speeding up integrals" for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.w0wacdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._w0, self._wa) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.w0wacdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0 + self._Onu0, self._w0, self._wa) else: self._inv_efunc_scalar = scalar_inv_efuncs.w0wacdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._w0, self._wa) @property def w0(self): """ Dark energy equation of state at z=0""" return self._w0 @property def wa(self): """ Negative derivative of dark energy equation of state w.r.t. a""" return self._wa
[docs] def w(self, z): """Returns dark energy equation of state at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ------ The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = w_0 + w_a (1 - a) = w_0 + w_a \\frac{z}{1+z}`. """ if isiterable(z): z = np.asarray(z) return self._w0 + self._wa * z / (1.0 + z)
[docs] def de_density_scale(self, z): r""" Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array-like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`, and in this case is given by .. math:: I = \left(1 + z\right)^{3 \left(1 + w_0 + w_a\right)} \exp \left(-3 w_a \frac{z}{1+z}\right) """ if isiterable(z): z = np.asarray(z) zp1 = 1.0 + z return zp1 ** (3 * (1 + self._w0 + self._wa)) * \ np.exp(-3 * self._wa * z / zp1)
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, "\ "Ode0={3:.3g}, w0={4:.3g}, wa={5:.3g}, Tcmb0={6:.4g}, "\ "Neff={7:.3g}, m_nu={8}, Ob0={9:s})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Ode0, self._w0, self._wa, self._Tcmb0, self._Neff, self.m_nu, _float_or_none(self._Ob0))
[docs]class Flatw0waCDM(w0waCDM): """FLRW cosmology with a CPL dark energy equation of state and no curvature. The equation for the dark energy equation of state uses the CPL form as described in Chevallier & Polarski Int. J. Mod. Phys. D10, 213 (2001) and Linder PRL 90, 91301 (2003): :math:`w(z) = w_0 + w_a (1-a) = w_0 + w_a z / (1+z)`. Parameters ---------- H0 : float or `~astropy.units.Quantity` Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. w0 : float, optional Dark energy equation of state at z=0 (a=1). This is pressure/density for dark energy in units where c=1. wa : float, optional Negative derivative of the dark energy equation of state with respect to the scale factor. A cosmological constant has w0=-1.0 and wa=0.0. Tcmb0 : float or scalar `~astropy.units.Quantity`, optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : `~astropy.units.Quantity`, optional Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str, optional Name for this cosmological object. Examples -------- >>> from astropy.cosmology import Flatw0waCDM >>> cosmo = Flatw0waCDM(H0=70, Om0=0.3, w0=-0.9, wa=0.2) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, w0=-1., wa=0., Tcmb0=0, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), Ob0=None, name=None): w0waCDM.__init__(self, H0, Om0, 0.0, w0=w0, wa=wa, Tcmb0=Tcmb0, Neff=Neff, m_nu=m_nu, name=name, Ob0=Ob0) # Do some twiddling after the fact to get flatness self._Ode0 = 1.0 - self._Om0 - self._Ogamma0 - self._Onu0 self._Ok0 = 0.0 # Please see "Notes about speeding up integrals" for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.fw0wacdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._w0, self._wa) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.fw0wacdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0 + self._Onu0, self._w0, self._wa) else: self._inv_efunc_scalar = scalar_inv_efuncs.fw0wacdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._w0, self._wa) def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, "\ "w0={3:.3g}, Tcmb0={4:.4g}, Neff={5:.3g}, m_nu={6}, "\ "Ob0={7:s})" return retstr.format(self._namelead(), self._H0, self._Om0, self._w0, self._Tcmb0, self._Neff, self.m_nu, _float_or_none(self._Ob0))
[docs]class wpwaCDM(FLRW): """FLRW cosmology with a CPL dark energy equation of state, a pivot redshift, and curvature. The equation for the dark energy equation of state uses the CPL form as described in Chevallier & Polarski Int. J. Mod. Phys. D10, 213 (2001) and Linder PRL 90, 91301 (2003), but modified to have a pivot redshift as in the findings of the Dark Energy Task Force (Albrecht et al. arXiv:0901.0721 (2009)): :math:`w(a) = w_p + w_a (a_p - a) = w_p + w_a( 1/(1+zp) - 1/(1+z) )`. Parameters ---------- H0 : float or `~astropy.units.Quantity` Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. wp : float, optional Dark energy equation of state at the pivot redshift zp. This is pressure/density for dark energy in units where c=1. wa : float, optional Negative derivative of the dark energy equation of state with respect to the scale factor. A cosmological constant has wp=-1.0 and wa=0.0. zp : float, optional Pivot redshift -- the redshift where w(z) = wp Tcmb0 : float or scalar `~astropy.units.Quantity`, optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : `~astropy.units.Quantity`, optional Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str, optional Name for this cosmological object. Examples -------- >>> from astropy.cosmology import wpwaCDM >>> cosmo = wpwaCDM(H0=70, Om0=0.3, Ode0=0.7, wp=-0.9, wa=0.2, zp=0.4) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Ode0, wp=-1., wa=0., zp=0, Tcmb0=0, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), Ob0=None, name=None): FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name, Ob0=Ob0) self._wp = float(wp) self._wa = float(wa) self._zp = float(zp) # Please see "Notes about speeding up integrals" for discussion # about what is being done here. apiv = 1.0 / (1.0 + self._zp) if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.wpwacdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._wp, apiv, self._wa) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.wpwacdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0 + self._Onu0, self._wp, apiv, self._wa) else: self._inv_efunc_scalar = scalar_inv_efuncs.wpwacdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._wp, apiv, self._wa) @property def wp(self): """ Dark energy equation of state at the pivot redshift zp""" return self._wp @property def wa(self): """ Negative derivative of dark energy equation of state w.r.t. a""" return self._wa @property def zp(self): """ The pivot redshift, where w(z) = wp""" return self._zp
[docs] def w(self, z): """Returns dark energy equation of state at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ------ The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. Here this is :math:`w(z) = w_p + w_a (a_p - a)` where :math:`a = 1/1+z` and :math:`a_p = 1 / 1 + z_p`. """ if isiterable(z): z = np.asarray(z) apiv = 1.0 / (1.0 + self._zp) return self._wp + self._wa * (apiv - 1.0 / (1. + z))
[docs] def de_density_scale(self, z): r""" Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array-like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`, and in this case is given by .. math:: a_p = \frac{1}{1 + z_p} I = \left(1 + z\right)^{3 \left(1 + w_p + a_p w_a\right)} \exp \left(-3 w_a \frac{z}{1+z}\right) """ if isiterable(z): z = np.asarray(z) zp1 = 1. + z apiv = 1. / (1. + self._zp) return zp1 ** (3. * (1. + self._wp + apiv * self._wa)) * \ np.exp(-3. * self._wa * z / zp1)
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, Ode0={3:.3g}, wp={4:.3g}, "\ "wa={5:.3g}, zp={6:.3g}, Tcmb0={7:.4g}, Neff={8:.3g}, "\ "m_nu={9}, Ob0={10:s})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Ode0, self._wp, self._wa, self._zp, self._Tcmb0, self._Neff, self.m_nu, _float_or_none(self._Ob0))
[docs]class w0wzCDM(FLRW): """FLRW cosmology with a variable dark energy equation of state and curvature. The equation for the dark energy equation of state uses the simple form: :math:`w(z) = w_0 + w_z z`. This form is not recommended for z > 1. Parameters ---------- H0 : float or `~astropy.units.Quantity` Hubble constant at z = 0. If a float, must be in [km/sec/Mpc] Om0 : float Omega matter: density of non-relativistic matter in units of the critical density at z=0. Ode0 : float Omega dark energy: density of dark energy in units of the critical density at z=0. w0 : float, optional Dark energy equation of state at z=0. This is pressure/density for dark energy in units where c=1. wz : float, optional Derivative of the dark energy equation of state with respect to z. A cosmological constant has w0=-1.0 and wz=0.0. Tcmb0 : float or scalar `~astropy.units.Quantity`, optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones). Neff : float, optional Effective number of Neutrino species. Default 3.04. m_nu : `~astropy.units.Quantity`, optional Mass of each neutrino species. If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino. Ob0 : float or None, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception. name : str, optional Name for this cosmological object. Examples -------- >>> from astropy.cosmology import w0wzCDM >>> cosmo = w0wzCDM(H0=70, Om0=0.3, Ode0=0.7, w0=-0.9, wz=0.2) The comoving distance in Mpc at redshift z: >>> z = 0.5 >>> dc = cosmo.comoving_distance(z) """ def __init__(self, H0, Om0, Ode0, w0=-1., wz=0., Tcmb0=0, Neff=3.04, m_nu=u.Quantity(0.0, u.eV), Ob0=None, name=None): FLRW.__init__(self, H0, Om0, Ode0, Tcmb0, Neff, m_nu, name=name, Ob0=Ob0) self._w0 = float(w0) self._wz = float(wz) # Please see "Notes about speeding up integrals" for discussion # about what is being done here. if self._Tcmb0.value == 0: self._inv_efunc_scalar = scalar_inv_efuncs.w0wzcdm_inv_efunc_norel self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._w0, self._wz) elif not self._massivenu: self._inv_efunc_scalar = scalar_inv_efuncs.w0wzcdm_inv_efunc_nomnu self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0 + self._Onu0, self._w0, self._wz) else: self._inv_efunc_scalar = scalar_inv_efuncs.w0wzcdm_inv_efunc self._inv_efunc_scalar_args = (self._Om0, self._Ode0, self._Ok0, self._Ogamma0, self._neff_per_nu, self._nmasslessnu, self._nu_y_list, self._w0, self._wz) @property def w0(self): """ Dark energy equation of state at z=0""" return self._w0 @property def wz(self): """ Derivative of the dark energy equation of state w.r.t. z""" return self._wz
[docs] def w(self, z): """Returns dark energy equation of state at redshift ``z``. Parameters ---------- z : array-like Input redshifts. Returns ------- w : ndarray, or float if input scalar The dark energy equation of state Notes ------ The dark energy equation of state is defined as :math:`w(z) = P(z)/\\rho(z)`, where :math:`P(z)` is the pressure at redshift z and :math:`\\rho(z)` is the density at redshift z, both in units where c=1. Here this is given by :math:`w(z) = w_0 + w_z z`. """ if isiterable(z): z = np.asarray(z) return self._w0 + self._wz * z
[docs] def de_density_scale(self, z): r""" Evaluates the redshift dependence of the dark energy density. Parameters ---------- z : array-like Input redshifts. Returns ------- I : ndarray, or float if input scalar The scaling of the energy density of dark energy with redshift. Notes ----- The scaling factor, I, is defined by :math:`\\rho(z) = \\rho_0 I`, and in this case is given by .. math:: I = \left(1 + z\right)^{3 \left(1 + w_0 - w_z\right)} \exp \left(-3 w_z z\right) """ if isiterable(z): z = np.asarray(z) zp1 = 1. + z return zp1 ** (3. * (1. + self._w0 - self._wz)) *\ np.exp(-3. * self._wz * z)
def __repr__(self): retstr = "{0}H0={1:.3g}, Om0={2:.3g}, "\ "Ode0={3:.3g}, w0={4:.3g}, wz={5:.3g} Tcmb0={6:.4g}, "\ "Neff={7:.3g}, m_nu={8}, Ob0={9:s})" return retstr.format(self._namelead(), self._H0, self._Om0, self._Ode0, self._w0, self._wz, self._Tcmb0, self._Neff, self.m_nu, _float_or_none(self._Ob0))
def _float_or_none(x, digits=3): """ Helper function to format a variable that can be a float or None""" if x is None: return str(x) fmtstr = "{0:.{digits}g}".format(x, digits=digits) return fmtstr.format(x) def vectorize_if_needed(func, *x): """ Helper function to vectorize functions on array inputs""" if any(map(isiterable, x)): return np.vectorize(func)(*x) else: return func(*x) def inf_like(x): """Return the shape of x with value infinity and dtype='float'. Preserves 'shape' for both array and scalar inputs. But always returns a float array, even if x is of integer type. >>> inf_like(0.) # float scalar inf >>> inf_like(1) # integer scalar should give float output inf >>> inf_like([0., 1., 2., 3.]) # float list array([inf, inf, inf, inf]) >>> inf_like([0, 1, 2, 3]) # integer list should give float output array([inf, inf, inf, inf]) """ if np.isscalar(x): return np.inf else: return np.full_like(x, np.inf, dtype='float') # Pre-defined cosmologies. This loops over the parameter sets in the # parameters module and creates a LambdaCDM or FlatLambdaCDM instance # with the same name as the parameter set in the current module's namespace. # Note this assumes all the cosmologies in parameters are LambdaCDM, # which is true at least as of this writing. for key in parameters.available: par = getattr(parameters, key) if par['flat']: cosmo = FlatLambdaCDM(par['H0'], par['Om0'], Tcmb0=par['Tcmb0'], Neff=par['Neff'], m_nu=u.Quantity(par['m_nu'], u.eV), name=key, Ob0=par['Ob0']) docstr = "{} instance of FlatLambdaCDM cosmology\n\n(from {})" cosmo.__doc__ = docstr.format(key, par['reference']) else: cosmo = LambdaCDM(par['H0'], par['Om0'], par['Ode0'], Tcmb0=par['Tcmb0'], Neff=par['Neff'], m_nu=u.Quantity(par['m_nu'], u.eV), name=key, Ob0=par['Ob0']) docstr = "{} instance of LambdaCDM cosmology\n\n(from {})" cosmo.__doc__ = docstr.format(key, par['reference']) setattr(sys.modules[__name__], key, cosmo) # don't leave these variables floating around in the namespace del key, par, cosmo ######################################################################### # The science state below contains the current cosmology. #########################################################################
[docs]class default_cosmology(ScienceState): """ The default cosmology to use. To change it:: >>> from astropy.cosmology import default_cosmology, WMAP7 >>> with default_cosmology.set(WMAP7): ... # WMAP7 cosmology in effect Or, you may use a string:: >>> with default_cosmology.set('WMAP7'): ... # WMAP7 cosmology in effect """ _value = 'Planck15'
[docs] @staticmethod def get_cosmology_from_string(arg): """ Return a cosmology instance from a string. """ if arg == 'no_default': cosmo = None else: try: cosmo = getattr(sys.modules[__name__], arg) except AttributeError: s = "Unknown cosmology '{}'. Valid cosmologies:\n{}".format( arg, parameters.available) raise ValueError(s) return cosmo
[docs] @classmethod def validate(cls, value): if value is None: value = 'Planck15' if isinstance(value, str): return cls.get_cosmology_from_string(value) elif isinstance(value, Cosmology): return value else: raise TypeError("default_cosmology must be a string or Cosmology instance.")