Distribution

class astropy.uncertainty.Distribution[source]

Bases: object

A scalar value or array values with associated uncertainty distribution.

This object will take its exact type from whatever the samples argument is. In general this is expected to be an Quantity or numpy.ndarray, although anything compatible with numpy.asanyarray is possible.

See also: http://docs.astropy.org/en/stable/uncertainty/

Parameters
samplesarray-like

The distribution, with sampling along the leading axis. If 1D, the sole dimension is used as the sampling axis (i.e., it is a scalar distribution).

Attributes Summary

distribution

n_samples

The number of samples of this distribution.

pdf_mad

The median absolute deviation of this distribution.

pdf_mean

The mean of this distribution.

pdf_median

The median of this distribution.

pdf_smad

The median absolute deviation of this distribution rescaled to match the standard deviation for a normal distribution.

pdf_std

The standard deviation of this distribution.

pdf_var

The variance of this distribution.

Methods Summary

pdf_histogram(self, \*\*kwargs)

Compute histogram over the samples in the distribution.

pdf_percentiles(self, percentile, \*\*kwargs)

Compute percentiles of this Distribution.

view(self[, dtype, type])

Attributes Documentation

distribution
n_samples

The number of samples of this distribution. A single int.

pdf_mad

The median absolute deviation of this distribution.

pdf_mean

The mean of this distribution.

pdf_median

The median of this distribution.

pdf_smad

The median absolute deviation of this distribution rescaled to match the standard deviation for a normal distribution.

pdf_std

The standard deviation of this distribution.

pdf_var

The variance of this distribution.

Methods Documentation

pdf_histogram(self, **kwargs)[source]

Compute histogram over the samples in the distribution.

Parameters
All keyword arguments are passed into `astropy.stats.histogram`. Note
That some of these options may not be valid for some multidimensional
distributions.
Returns
histarray

The values of the histogram. Trailing dimension is the histogram dimension.

bin_edgesarray of dtype float

Return the bin edges (length(hist)+1). Trailing dimension is the bin histogram dimension.

pdf_percentiles(self, percentile, **kwargs)[source]

Compute percentiles of this Distribution.

Parameters
percentilefloat or array of floats or Quantity

The desired precentiles of the distribution (i.e., on [0,100]). Quantity will be converted to percent, meaning that a dimensionless_unscaled Quantity will be interpreted as a quantile.

Additional keywords are passed into `numpy.percentile`.
Returns
percentilesQuantity

The fracs percentiles of this distribution.

view(self, dtype=None, type=None)[source]